MeuUMTITeatuauysal

nseenuuUKArasNssuLAsmslfasuuulasnduiemalinmsindoudyniaeaiuuy
dyarandesuasniadunuudulasluduiuda
Design and Development of Secure Wireless Communication System

Using Chaotic Masking Technique and Adaptive-Synchronization Receiver
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1. Introduction and Backgrounds

Chaos is a phenomenon that occurs in nonlinear dynamical systems. Such deterministic
dynamical systems have their origin in Newtonian physics, leading to the systematic development in
differential calculus. The “physical laws of nature” in the Newtonian sense propose to model all
phenomena by deterministic laws describing the flow of system states [1]. Mathematicians and physicists
have sought to understand the world in terms of these deterministic laws, and due to the lack of
powerful computation devices, searched for closed form solutions for deterministic dynamical systems.
Unfortunately, the existence of closed form solutions is essentially limited to the case of linear dynamical
systems. This did, however, not limit the optimism of visionaries conjecturing that, with the knowledge of
all “physical laws of nature”, predictions about the however remote future of dynamical systems are
feasible. In order to scope with the incompleteness of the deterministic description available about a
system, the concept of randomness has been introduced to capture all behavior counters the concept of
predictability. While a number of important ideas refer to Cardano, Bernoulli and, in particular Gauss and
Fermat, there are mainly the results of Kolmogorov in the 1930’s [2] that influenced modern probability
theory. Another manifestation of randomness comes from statistics, in which by the very nature of the
problem, a complete description of the underlying dynamical system is not available.

For the dynamical [3] systems approach, it was Poincare’ observed that determinism does not
necessarily lead to predictability without limits (though the consequences were not completely
understood at his time). Indeed, Poincare’ described the intrinsic nature of what has later been called
“chaotic behavior”, their sensitive dependence on initial conditions. An example is the computer
processing evolution of a rather complex dynamical system. Despite the initial optimism it has been
found unpredictable over a longer time period. However, this unpredictability need not be linked to
complex systems. For the very example of the weather, Loren found deterministic unpredictability even
in a very simplified third order module. a small perturbation of the state of the system would very soon
lead to a macroscopically different evolution of the system

In the past years, synchronization of chaotic systems problem has received a great deal of
attention among scientists in various fields. As it is well known, the study of the synchronization problem
for nonlinear systems has been very important from the nonlinear science point of view, in particular, the
applications to biology, medicine, cryptography and secure data transmission. In general, synchronization
research has been focused on two areas. The first one relates to the employment of state observers,

where the main applications pertain to the synchronization of nonlinear oscillators. The second one is the
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use of control laws, which allows achieving the synchronization between nonlinear oscillators, with
different structure and order. Of particular interest is the connection between the observers for nonlinear
systems and chaos synchronization, which is also known as master-slave configuration. Therefore, chaos
synchronization problem can be posed as an observer design procedure, where the coupling signal is
viewed as output and the slave system is regarded as observer. The general idea for transmitting
information via chaotic systems is that, an information signal is embedded in the transmitter system which
produces a chaotic signal, the information signal is recovered when the transmitter and the receiver are
identical. Since Pecora and Carroll’s [1-3] observation on the possibility of synchronizing two chaotic
systems, several synchronization schemes have been developed. Synchronization can be classified into
mutual synchronization and master slave synchronization.

There are many applications to chaotic communication and chactic network synchronization. The
techniques of chaotic communication can be divided into three categories (1) Chaos masking; the
information signal is added directly to the transmitter. (2) Chaos modulation; it is based on the master-
slave synchronization, where the information signal is injected into the transmitter as a nonlinear filter. (3)
Chaos shift keying; the information signal is supposed to be binary, and it is mapped into the transmitter
and the receiver. In these three cases, the information signal can be recovered by a receiver if the
transmitter and the receiver are synchronized. In order to reach synchronization, the receiver should be a
replica of the transmitter.

Security is an important for communication. Where of two entities are communicating in a way
not susceptible to eavesdropping or interception. This is known secure communication. This includes
means by which people can share information with varying degrees of certainty that third parties cannot
intercept. There have been considerable intefests in chaotic communications over the past several years.
Synchronization caused great interest in science and technology workers. The research of the application
of chaos synchronization in secret communication is the most competitive research fields in recent years.
Most of the secure communication system requirements of the signal modulation, as far as possible the
regular and has strong anti-interference ability to interpret.

The synchronization methods have been proposed in a number of the related theories and
experiment results. The existing problems encountered includes relatively high decoding errors, slow
decoding of receiver processing signals, large size of circuit implementation, which may lead to the
application to the communication. Various unseen result were still in which theoretical forms which have

not been practically utilized in recent years. Therefore, the chaotic jerk oscillator may be a potential
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alternative the size and simple synchronization. Feedback reconstruction may lead to an error reduction

and also perform a faster synchronization.
2. Objectives

2.1 To design and implement compact cost-effective chaotic circuits.

2.2 To design and implement the chaotic-masking secure communication system.

3. Research Scopes

3.1 Study the dynamical system including chaos theory, nonlinear analysis through the
mathematical model such as dynamic equation, time-scaling mode, Eigen value, Eigen-
Vector, Jacobian-Matrix and also Stability analysis. Study chaotic indicators such as
attractor, time-domain, Poincare’ section, Bifurcation, Lyapunov diagram and Kaplan-York
dimension [1-3]. The research will also enhance the model of chaotic function by
generalizing the form of the chaotic function equation.

3.2 Implement chaotic circuit in secure communication systems for simulation and design
including chaotic circuit by generalizing the form of the chaotic function equation.

3.3 Implement the chaotic-masking secure  walky-talky communication — system.
4. Liturature Reviews

4.1 Chaos Theory and Dynamical System

Chaos is a short word describe a behavior of dynamical [2] systems which appears closely to
random, however, the chaotic systems can be rewritten through the set of nonlinear equation systems.
Such the chaotic systems appear normally in natural environments. Chaos and randomness are generally
due to the chaotic characteristic still confused with the random behavior. Chaos can occur only in
nonlinear systems and characterized by a breakdown of predictability known as sensitive dependence on
initial conditions which is the most important distinguishing feature of chaos. This implies that even
though chaotic systems are deterministic, even the smallest difference in initial state can cause a

dramatically difference in the final state. Long term predictability of chaotic systems is impossible since
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all numerical calculations have a finite non-zero error which will diverge over time and the predictions
unreliable. The chaotic behavior contain three majors properties , (1) chaos can occur only in
deterministic nonlinear dynamical systems,(2) Chaotic behavior looks complicated and irregular but has
an infinite number of unstable periodic patterns embedded in the system and (3) chaotic behavior is

sensitive to initial conditions

4.2 Dynamic Systems

A dynami‘cal system is one whose state changes in time. If the changes are determined by
specific rules, rather than being random. The system is deterministic; otherwise it is stochastic. The
changes can occur at discrete time steps or continuously. This book will be concerned with continuous-
time, deterministic, dynamical systems since they arguably best approximate the real world. This view
represents the prejudice of most physical scientists, but it is also the case that chaos is relatively too easy
to achieve in discrete-time systems, and hence it is less of a challenge to find elegant examples of chaos
in such systems, and those that are found have less apparent relevance to the natural world. Also,
discrete-time systems have already been extensively explored, in part because they are more
computationally tractable. Stochastic systems mimic many of the features of chaos, but they are not
chaotic because chaos is a property of deterministic systems. Furthermore, introducing randomness into a
dynamical model is a way of admitting ignorance of the underlying process and obtaining plausible

behavior without a deep understanding of its cause.

4.3 Summary of Related Chaos from Dynamic Systems

Table 1 shows literature review of chaos jerk function, which are initially reviewed as Chaos
theory. Six particularly related chaos theory for secure communication have previously been proposed by
Ken Kiers and Dory Schmidt(2003), VinodPatidar and K KSud(2005), GuoboXie and et al.(2008), Ljubita M.

Koci¢ and Sonja Gegovska-Zajkova (2009) and BunchaMunmuangsae and et al. (2011)
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Table 1 Summary of existing chaos jerk functions.

Authors Year Title

5 !
TR

Vinod Patidar and K K Sud

: Lt b
Ljubida M. Koci¢ and Sonja 2009 On a Jerk dynamical systems

Gegovska-Zajkova

First, Ken Kiers and Dory Schmidt [5], describe a simple nonlinear electrical circuit that can be
used to study chaotic phenomena. The circuit employs simple electronic elements such as diodes,
resistors, and operational amplifiers, and is easy to construct. A novel feature of the circuit is its use of an
almost ideal nonlinear element, which is straightforward to model theoretically and leads to excellent
agreement between experiment and theory. The circuit contains three successive nverting integrators with
outputs at the nodes labeled V2, V1, and x,as well as a summing amplifier with its output at V3. If we use

Kirchhoff’s rules at nodes a-d.
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Figure 1 Schematic diagram of the circuit presented by Ken Kiers and Dory Schmidt.

Second, Vinod Patidar and K K Sud have derived the recursive proportional feedback algorithm and
shown that it can be used to control chaotic oscillations in the Kiers, Schmidt, and Sprott electronic
circuit. Control is well within the uncertainty of the target fixed point. The values of the coefficients used
in the recursive proportional feedback algorithm were calculated from experimentally measured values of
the output voltage of the circuit during precontrol measurements. Recursive proportional feedback is
suitable for highly dissipative systems, of which the KSS circuit is an example. Simple proportional
feedback is also suitable for some highly dissipative systems, but cannot be used for the KSScircuit
because the movement of the system’s chaotic attractor through phase space depends on both the

current and previous perturbations.
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Figure 3 Behavior of the jerk dynamical system having quadratic non-linearity for a fixed value of

parameter B = 0:56
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Third, GuoboXie and et al. [7], In this paper, An approach for generating multi directional grid chaotic
attractors from a third-order Jerk system is proposed via constructing a series of staircase functions,
including two-directional and three- directional multi-scrotl chaotic attractors. its dynamical behaviors are

investigated by means of theoretical analysis as well as numerical simulation.

Figure 5. 3x3x3 grid-scroll chaotic attractors presented by GuoboXie and et al..

Forth, Ljubisa M. Koci¢ and Sonja Gegovska-Zajkova [8], chaotic systems of J.C. Sprott emanated
from electric circuits tum to be attractive examples of week chaos the only form of chaos that eventually
might be acceptable in sensible applications like automatic control or robotics. Here, two modifications of
a 3D dynamic flow, known as jerk dynamical system of J.C. Sprott are considered. The left-semi quadratic
system x  =-Ax "+g_k x " )x. The system preserves chaotic regimeof the original Sprott setting x ~ =-
AX #x A2 for lesser values of A and bigger slopevalues k. The choice A = 1.3 and k = 1 produces
recognizable phase diagrams, given in two projections in Fig. 2.24. The x(t) diagram and the DFT confirms
chaotic element, and the Lyapunov coefficient is A1 = 0.0338091.0ne of the simplest dynamic flows that
still exhibits chaotic behavior is Sprott’s jerky system, given by equationsx oA +x N2-x, where \J (é) =
§2. This system "works" on the "edge" of chaos, which is evident from its small first Lyapunov exponent

(A1 = 0.0551). Tracing for simpler function ¢ that yet supplies chaotic dynamics, Sprott and Linz tried
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with (§) = |Z;|, the continuous function that represents a kind of piecewise linear approximation of
quadratic function. In this case, no chaos has been detected. The present note deals with the “hybrid”
case embodied in two semi-quadratic functions, the left- and the right one, see Fig.2.24 for the graphs.
Surprisingly, the left semi-quadratic function gk(§) produces chaos for some values of the larger part’s
variable slope k, and the corresponding value of A, while the symmetric, right semi-quadratic function

hk(€) leads only to a non-chaotic dynamics.
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Figure 6 The x(t) diagram and the DFT confirms chaotic element with A= 1.3; k = 1; A,= 0.0338091
presented by Ljubisa M. Koci¢ and Sonja Gegovska-Zajkova[7].

Last, Buncha Munmuangsae and et al. [9], an extensive numerical search of jerk systems of the form x
“tx x =f(x) revealed many cases with chaotic solutions in addition to the one with f(x )=#xA2that has
long been known. Particularly simple is the piecewise-linear case withf(x)=0l(1-x)forx =1 and zero
otherwise, which produces chaos even in the limit of ((—e0) the dynamics in this limit can be
calculated exactly, leading to a two-dimensional map. Such nonlinearity suggests an elegant electronic
circuit implementation using a single diode. This raises the question of whether there are other simple
chaotic systems of the form  and with A = 0.1, is particularly interesting. It has the curious feature of

having chaotic solutions in the limit of A—>0 as is evident from its largest Lyapunov exponent and
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bifurcation diagram (the local maxima of x) shown in Figure 2.25, which shows a period-doubling route to
chaos. The attractor grows in size as A—>0 since a larger x is requiredto achieve the same nonlinearity as
A decreases The equilibrium point for this case has Eigenvalue = .1.5193, 0.2596 + 0.7686i, which satisfies
the Shilnikov condition since the absolute value of the real Eigenvalue is greater than the absolute value
of the real part of the complex Eigenvalue, providing a proof of chaos. For this value of A, the largest
Lyapunov exponent is near its maximum with a Lyapunov exponent spectrum of (0.1016, 0, .1.1016) and
a Kaplan-Yorke dimension of DKY = 2.0922.In conclusion, several simple chaotic systems of the formx
"4x #x=f(x Jhave been studied. They have similar maximum valuesof their largest Lyapunov exponents
and corresponding Kaplan.Yorke dimensions. Furthermore, all cases have FA' (x)>-1with spiralsaddles of

index 2. Particularly simple is the piecewise-linear casewith f(x )=Cl(1-x Yfor
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Figure 7 (a) Attractor form equation and (b) The largest Lyapunov exponent and bifurcation diagram of

equation for f ("x)=-A exp(x) with 0 < A <0.5 presented by Buncha Munmuangsae and et al.
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4.4 Summary of Related Chaotic Communication Systems

Table 2 show application chaotic systems for communication, which is initially reviewed as
purpose chaotic system for communication. Nine mainly linked chaos application chaotic system for
communication have previously been proposed by Shihua Chen and et al.(2003), Pehlivan and Y.
Uyaroglu(2007), Dandan Zhao and et al.(2008), GaoBingkun and et al.(2009), Said SADOUDI and Mohamed
Salah Azzaz(2009), lhsan Pehlivan and et al. (2010), Jiejing Liu and Yanli Zhang(2011) and Jing Pan and

Qun Ding(2011)

Table 2 Summary of applications of chaotic system for communications.

Author Year Title

Pehlivan and Y. 2007 Simplified chaotic dlffu5|on less Lorentz attractor and ItS appllcatlon to

Uyaroglu secure communication systems

Sald SADOUDI and 2009 Hardware Implementatlon of the Réssler Chaotic System for Securing

Mohamed S.A. Chaotic Communication
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First, Shihua Chen and et al. presents an approach of adaptive synchronization and parameters
identification of uncertain Rossler hyper chaotic system is proposed. The suggested tool proves to be
globally and asymptotically stable by means of Lyapunov method. With this new and effective method,
parameters identification and synchronization of Réssler hyper chaotic with all the system parameters
unknown, can be achieved simultaneously. Theoretical proof and numerical simulation demonstrate the
effectiveness and feasibility of the proposed technique. Réssler hyper chaotic system was provided by
Rossler in describing dynamics of some hypothetical chemical reaction and is a first example of hyper

chaotic system with two positive Lyapunov exponents.
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Figure 8 Graphs of parameters identification results presented by Shihua Chen and et al..
Second, Pehlivan and Y. Uyaroglu, this show Diffusion less Lorentz equations a simplified one-
parameter version of the well-known Lorentz model. Also, it was attained in the limit of high Rayleigh and

Prandtl numbers, physically corresponding to diffusion less convection. A simplified, one-parameter

m

Feumsideatvanysal : Jua waudy Wi 12




version of the Lorentz model called diffusion less Lorentz is proposed, which is suitable for chaotic
synchronization and masking communication circuits using Matlab/Simulink and Spice programmers. It is

also suitable for a real electronic experimental circuit.
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Figure 9 Spice circuit presented by Pehlivan and Y. Uyaroglu.
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Figure 10 Spice simulation results (a) x, y phase portrait (b) x, z phase portrait presented by Pehlivan and

Y. Uyaroglu.
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Third, GaoBingkun, Li Wenchao and Hu Yue [12], against the nature of hyperchaos dynamic system, a
modified hyper-chaotic sequence encryption algorithm was given. This method used the dynamic system
of TNC Hyper chaos. And proved to have the effective ability of exhaustive attack and anti-nonlinear
reorganization; Used Sub-NY Quist sampling interval to increase the key space, this method has the ability
of anti-nonlinear reorganization attack; realized the algorithm’s encryption and decryption by using
MATLAB simulation platform and got some satisfactory results which make out that the arithmetic is
faster and easier implementation by software, had a large key space and so on. cryptogram designs
flexible and has a large design space. It can enhance security, provide possibilities of a solution to
improve the limited effect which result in short cycles, provide a guarantee for improving anti-exhaustive
attacks. It can provide a large key space. TNC circuit equation has a large number of system variables and
parameters which can be used as the seed key for the sequence cryptosystem. The algorithm not only
has a large key space but also can improve the security.
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Figure 11 Attractors of TNC Hyper chaos circuit presented by GaoBingkun, Li Wenchao and Hu Yue.
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Forth, Said Sadoudi and Mohamed Salah Azzaz presents a real-time implementation of the Rassler
chaotic system in a Field Programmable Gate Array(FPGA) is presented. At first, we use directly the VHDL
language for the hardware description of the system, contrary to some previous works where the Xilinx
system generator of MATLAB-Simulink used to generate the VHDL code. Then, after a step of
optimization, to reduce the resources of the circuit target Virtex-Il xcv1000-4fgd56, we implement the
chaotic system on FPGA. The real-time chaotic signals obtained at the output of the FPGA are then
compared with those obtained by MATLAB and Models simulation, in order to validate our results.
However, the goal of this work is to introduce this chaotic system in an eventual secure digital chaotic

communication system. O. E. Réssler introduced his equations system in 1976.

c Reset

Analog chaotic Signal

Figure 12 Scheme of the digital implementation of Réssler chaotic system on FPGA presented by Said
Sadoudi and Mohamed Salah Azzaz.
Last, IhsanPehlivan, YilmazUyaroglu and M. Ali Yalcinve Selguk Coskun presents synchronizing two
coupled ratchet Josephson junctions subjected to a quasiperiodic field is achieved. in the limit of weak
perturbation of irrational frequencies equal to the square root of the transcendental number and for
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small damping parameters, phase locking occurs as the coupling between both junctions is increased. It
turns out that the transition from non-synchronous to synchronous chaotic state does not involve
attractors appearing and disappearing. The undertaken symmetry analysis of the system demonstrates the
suppression of the massive phase fluctuations as the coupling rises, allowing chaos synchronization
between both junctions to take place. The calculations also reveal the persistence of the synchronous
state for high coupling strengths, taking into consideration the symmetry particularity of the external drive

and potential.

l—} it —p| St
E5—| To Worigpace? it) To Workspace5
“ i-H»: ' E’_I St St ~
Information Signal Yo o] >
Yet)
» v
Y'Y | x __ x Tovbreme Receiver ,.

ToWorkpace3 b21

» Yc v

Y

Figure 13 Simulink modeling of chaotic masking communication circuit of the Armeodo Attractor

presented by lhsan Pehlivan and M. Ali Yalcinve Selcuk Coskun
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Figure 14 Simulink outputs of Masking Communication Scheme of Arneodo Attractor (a) Drive (y) and
response (yr) system chaotic signals vs. Time, (b) Transmitted signal S(t) = y(t) + i(t), ¢) Information i(t) and
retrieved ir(t) signals(sinus signal) has 0.2V amplitude and frequency 10 KHz presented by Ihsan Pehlivan

and M. Ali Yalcinve Selcuk Coskun.

5. Proposed Chaotic Flow ana"ItS-ReS(iité' i_"ﬁ-"_: :

5.1 Proposed R&ssler Attractor using Diode Equation

In 1963, Edward Lorenz [21] encountered sensitively dependent initial conditions of an
atmospheric convection model while performing numerical simulations leading to the discovery of the
Lorenz system with seven-terms in three-dimensional ordinary differential equations and two quadratic
nonlinearities. In 1976, Réssler [24] proposed a chaotic system with seven terms and a single quadratic
nonlinearity, which is algebraically simpler than Lorenz system. In addition, a single folded-band attractor
of Réssler system is topologically simpler than a two-scroll Lorenz attractor. Such Lorenz and Réssler
systems have consequently led to considerable research interests in searching for new chaotic systems
with fewer terms in ODEs [5-10] or more complex attractor topology.

Several chaotic systems with fewer than seven terms and two quadratic nonlinearities
continuously been reported as variants in Lorenz system family. Complex three-scroll and four-scrolt
attractors based on Lorenz system have also been suggested through the use of three or more quadratic
nonlinearities. On the other hand, simple chaotic systems with a single nonlinearity similar to Réssler
system are rarely found. In fact, Rossler himself had proposed another system with six terms and a single
quadratic nonlinearity in 1979 [30-35]. In 1994, Sprott [15-19] found fourteen cases with six terms and a
single quadratic nonlinearity through an intensive numerical computer search. Recently, many simple

systems have been proposed in simple Jerk equations with single quadratic or non-quadratic
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nontinearities. Despite the fact that these simple Jerk chaotic systems with a single nonlinearity
potentially resemble the single folded-band Rossler attractor , the Kapelan-York dimension (Dy,) as a
measure of complexity is somewhat lower than the original Rossler attractor that possesses the greatest
value of Dy =2.1587. This teads to a question of whether the original Rassler system in dynamic forms
can be simplified into fewer terms with simple nonlinearity, or modified for more complex attractor. No

simplifications of Réssler system has never been found so far.

5.2 Dynamical Properties

Based on the Rossler system proposed in 1979, the first and the second equations, ie.
X=-y—2z and y = x+ ay, initiate a normal band of the attractor through an outward spiral motion
into the x-y phase plane. Nonlinear interactions between x and z variables in the third equation, i.e.
z=b+2z(x—c), form an additional folded band to the overall attractor. It is noticeable that the
folded band in Réssler attractor rises and returns exponentially in z-dimension especially for positive
values of x variable under the flows. This aspect implies that the third equation may be modified through
the use of an exponential nonlinearity. Therefore, a new chaotic system is therefore presented in three-

dimensional autonomous ODEs expressed in a general form as

X==y-2z
y=x+ay (1)
z=-z+bF(x)

where (x, y,z) € R are dynamical variables, (a,b) € R" are system parameters, and F(x) is a nonlinear
function required for chaos. Two particularly simple cases of the nonlinear function F(x) are presented

using exponential functions. In other words,

FE(x)=e" )

m
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5.3 Numerical analysis

The existence of attractor can be described by the divergence of flows. For a dissipative chaotic
system, p<0-and therefore a is limited into the region 0 < a< 1. The exponential rate of contraction is
dv/dt =€ and hence a volume elementV, is contracted in time t by the flows into a volume element
Voe_t. Each volume containing the system trajectories shrinks to zero as time t approaches +. All system
orbits will be confined to a specific limit set of zero volume, and the asymptotic motion converges onto
an attractor. It can be concluded that the existence of attractors is constant and independent to the

nonlinear term bF(x).

5.4 Bifurcations, Lyapunov Exponents, and Kaplan-Yorke Dimension

Numerical simulations have been performed in MATLAB using the initial condition of (x0, y0, z0) =
(1, 0, 1). In fact, the initial condition is not crucial, and can be selected from any point that lies in the
basin of attractor. In order to find the control parameter a that offers the maximum values of chaoticity
and complexity, Figure 4.1 shows the bifurcation diagram of the peak of z (z max) versus the parameter b.
It is seen in Figure 4.1 that the system exhibits a period-doubling route to chaos. In addition, Figure 4.2
shows the plots of the positive LE versus the parameter b. The chaoticity is a measure of the greatest LE,
which is the average rate of growth of the distance between two nearby initial conditions that grows
exponentially in time when averaged along the trajectory, leading to long-term unpredictability property.
The Lyapunov exponents can be employed for the estimation of the rate of entropy production and the

fractal dimension commonly known as Kaplan-Yorke dimension Dyy, i.e.

U g g LE+IE, 3)

where k is a non-integer constant, and typically equals to 2 for three-dimensional chaotic systems.
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Figure 15 Bifurcation diagram fixed b=0.0007.

5.5 Numerical Equilibria and Eigenvalue

The Jacobian of the system is

O=-y—-2z
O=x+ay )
0=—z+be” A

where x, y and z are the state variables and a, bare positive real constants. The system displays a typical

chaotic attractor when a = 0.2 and b=0.00045. The new system has equilibrium points (0, 0, 0)

0 -1 -1
J='1 a 0 5)
bF' 0 -1

Applying the equilibrium point P into this Jacobian matrix and analyzing |I7\ . ]| = () reveal a resulting

characteristic polynomial as follows:

m
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Figure 16 Chaotic scheme Rossler attractor using Matlab Simulink.

Figure 17 Simulation Phase portraits with F,(x) = e” at a =0.30 and b=0.0007, LEs = (0.0638, 0, -0.8641),

Dyy =2.0738.
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Figure 19 Result chaotic attractor of real electronics circuit.
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2 +(1-a)A? +(BF —a+1)A+(abF' —1)=0 )

According to the Routh-Hurwitz stability criterion, the system (1) is unstable when Fe(l+ (1-af V(b-2ab).
Note that dynamic behaviors depend on two parameters a andb, and can be characterized completely by
the plot of parameter space without redundancy. For all particular values of a and b in the subsequent
numerical analyses, the resulting eigenvalue A, is a positive real number and A ,and A 3 are a pair of
complex conjugate with positive real parts, indicating that the equilibrium points are all saddle focus
points. Fig.18 shows the circuit schematic for implementing real electronics circuit form eq. 4.1. We use
TLO81 op-amps, diode 2N4148, R =10k€2, C= 1nF and potentiometer. k1 = 44 kQ and k2 =0.7 kQ. The
circuit is supplied + 9V. As show Figure 19 shows the result experimental chaotic attractor from

oscilloscope. Figure 4.10 shows the comparision between simulation and experiment when b = 0.0007

and Rb = 0.7 kQ.

Simulation Experimental

a=01 Ra = 50.83 K Ohm

NP

.

Ra = 44.26 K Ohm

§
a=03 Ra = 25.45K Ohm

a=0.35 Ra =23.28 K Ohm

Figure 20 Comparision between simulation and experiment when b = 0.0007 and Rb = 0.7 kQ.
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Figure 21 Simulation of time-domain chaotic waveforms of x, y and z.

swunsideatuanysel : Jua uaudu wih 24



6. Proposed Secure Communiéafion -Sysvtems based on R&ssler Attractor

Due to the fact that output signal can recover input signal, it indicates that it is possible to
implement secure communication for a chaotic system. Fig. 22 shows the principle scheme of a general
secure communication system that employs the masking technique. Figure 23 shows Simulink modeling
of chaotic masking communication circuit of the Réssler Attractor. The presence of the chaotic signal
between the transmitter and receiver has proposed the use of chaos in secure communication systems.

The design of these systems depends on the self-synchronization property of the Rossler Attractor.

i(?)
+ + S](t) + t
X¢ =@ X,

+

—>i1(9)

<
Y
<

N
Y
N

Transmitter Reciever

Figure 22 shows the principle scheme of a general secure communication system that employs the

masking technique.

Transmitter and receiver systems are identical except for their initial values, in which the
transmitter system is 1, 0, 1 and the receiver systems are 3, 0, and 3. It is necessary to make sure the
parameters of transmitter and receiver are identical for implementing the chaotic masking
communication. In this masking scheme, message signal is added to the synchronizing driving chaotic
signal in order to regenerate a clean driving signal at the receiver. Thus, the message has been perfectly
recovered by using the signal masking approach through cascading synchronization in the make sure the
parameters of transmitter and receivers are identical for implementing the chaotic masking
communication. In this masking scheme, a message signal is added to the synchronizing driving chaotic
signal in order to regenerate a clean driving signal at the receiver. Thus, the message has been perfectly
recovered by using the signal masking approach through cascading synchronization in the Rdssler

Attractor. Computer simulation results have shown that the performance of Rassler Attractor in chaotic

m
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masking and message recovery. One disadvantage of using one-way coupling method is that compared to
this cascading method, it takes longer to synchronize the coupled systems, especially when the coupling
parameter is small. This may cause problems in practical applications such as secure communications
since information may be delayed or lost during the first period of matching time Réssler Attractor.
Computer simulation results have shown that the performance of Réssler Attractor in chaotic masking and
message recovery. One disadvantage of using one-way coupling method is that compared to this
cascading method, it takes longer to synchronize the coupled systems, especially when the coupling
parameter is small. This may cause problems in practical applications such as secure communications

since information may be delayed or lost during the first period of matching time.
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Figure 23 Chaotic Synchronization Circuit.
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Figure 24 Simulation of Synchronization results input and recovered output signal.
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Figure 25 Result chaotic synchronize (a) analog signal and (b) digital signal.
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Figure 26 Design Schematic of chaotic communication application for walky-talky.
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Figure 27 real circuit chaotic communication applications for walky-tatky.
6. Conclusions

This research focuses on the new Rossler chaotic Attractor’s chaotic oscillator circuits and can be
described by Bifurcation, Lyapunov Exponents, and Kaplan-Yorke Dimension, implement chaotic circuit
and their applications in signal masking communications. New Réssler Attractor’s chaotic oscillator circuits
has were designed and simulated. Chaotic signal masking circuits were realized using Matlab-Simulink and
real circuit. Related figures point out that Matlab-Simulink and real circuit outputs prove the same
conclusions. We have demonstrated in simulations that Chaos can be synchronized and applied to secure

communications. We suggest that this phenomenon of chaos synchronism may serve as the basis for little

m
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known new Rossler Attractor to achieve secure communication. Simulation results are used to visualize
and illustrate the effectiveness of new Rossler chaotic system in signal masking. All simulations results
performed on Rossler chaotic system are verified the applicable of secure communication. For
experiment Result, we can implement chaotic circuit has high stability and application for two channel
chaotic communication. The synchronization of chaotic systems offers an interesting possibility to send

secure information via chaotic signals.
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Abstract— Chaotic signals have recently been of much
interest as a new promising carrier frequency or an
unpredictable masking signal for applications in secure
wireless communication systems. Existing chaotic circuits
have  extensively been  constructed based on
threedimensional ordinary differential equations. It has
recently been reported that jerk chaotic systems can
generate chaotic signals through a single dynamical
equation, leading to an algebraically simple mathematical
model as well as a cost-effective circuit implementation. This
paper presents a very simple autonomous RC chaotic jerk
oscillator with nine electronic components. The nonlinearity
required for chaos is implemented through the use of a well-
known diode equation. Basic dynamical properties are
described including equilibria, eigenvalues of Jacobian
matrix, chaotic attractors, time-domain waveforms, power
spectrum, and bifurcations. Potential application of such a
simple autonomous RC chaotic jerk oscillator is presented
in message-masking and synchronization for secure digital
communications. The results show that the chaotically
masked message is fully synchronized at the receiver
through the use of very simple circuit. Consequently, the
proposed new paradigm on secure communication schemes
offers not only a simple mathematical system, but also very
cost-effective circuit and system implementations.
Keywords-component; Chaotic Jerk Oscillator, Secure
Communications, Chaotic Masking

1. INTRODUCTION

In 1963, Edward Lorenz encountered sensitive
dependence of initial conditions of an atmospheric
convection model, leading to the discovery of the Lorenz
system with seventerms in three-dimensional ordinary
differential equations (ODEs) and two quadratic
nonlinearities. In 1976, Réssler proposed another chaotic
system with seven terms in ODEs and a single quadratic
nonlinearity, which is algebraically simpler than the
Lorenz system. A single folded-band attractor of Rossler
system is also topologically simpler than a twoscroll
Lorenz attractor. The Rossler system has therefore been
utilized as a basic system in searching for new chaotic
systems and employed in various applications such as in
secure communications or in control systems. The well-
known Chua’s circuit [1, 2] is a chaotic oscillator based
on three firstorder ordinary differential equations
(ODEs). Several chaotic oscillators such as [2], [3], [4],
[5], [6], [7] are alternatively based on a single third-order
ODE of a jerk form. The term ‘jerk’ comes from the fact

that successive time derivatives of displacement are .

47

velocity, acceleration, and jerk. Most chaotic jerk
oscillators have employed nonlinearity only in the x term
of the jerk function. The simplest dissipative chaotic flow
has, however, employed a quadratic nonlinearity in the
term of the jerk function. Recently, [5] have shown
minimal jerk flow of (1) with nonlinearity in the X term
of the form

¥+ i+x= —ae*

O]

in which chaos occurs for @ = 0.27. Such a nonlinear
function is of particular interest as it resembles diode
charactreristics. Sprott [6] has subsequently implemented
(1) in the form

@

The oscillator (2), however, requires large counts of
14 electronic components including 4 op-amps. Although
the oscillator (1) has been implemented by a minimal
chaotic jerk equation of (1), the required number of
electronic components does not seem to be minimal. It is
natural to wonder in the opposite direction whether or not
a slightly more complicated chaotic jerk equation may
greatly reduce the large counts of electronic components
for the chaotic oscillator.

This paper presents a very simple autonomous RC
chaotic jerk oscillator with nine electronic components.
The nonlinearity required for chaos is implemented
through the use of a well-known diode equation. Basic
dynamical properties are described including equilibria,
eigenvalues of Jacobian matrix, chaotic attractors, time-
domain waveforms, power spectrum, and bifurcations.
Potential application of such a simple autonomous RC
chaotic jerk oscillator is presented in message-masking
for secure Communications.

¥+ Ft+x= —10 {e(r:z?) - 1}
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vy
K
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Figure 1. RC-Base chaotic oscillator
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The results show that the chaotically masked message is
fully synchronized at the receiver through the use of very
simple circuit. Consequently, the proposed new paradigm
on secure communication schemes offers not only a
simple mathematical system, but also very cost-effective
circuit and system implementations.
Circuit Realizations

In an attempt to reduce the number of electronic
components, the minimal form (1) may be modified with
a slightly more complicated jerk function and a simple
diode equation expressed as

Ip = I {exp (nl,,y,;) - 1} ©))
in the following form
¥=]Ex,2)+ IR “@

where the voltage drop across the diode is V), = (x + 2x),
Is is the reverse saturation current of diode, Vp is the
thermal voltage at room temperature, » is the non-ideality
factor of diode, R is a parameter and J (¥, %, x) is a jerk
function. Fig.1 illustrates an electronic circuit realization
of the autonomous RC chaotic jerk oscillator, consisting
of an amplifier, three resistors, three capacitors and a
single diode. These components implement an integrator
and a second-order RC passive filter in a feedback loop
with a smaller nonlinear feedback loop containing a
diode. Applying nodal analysis,

Ves]  [-2/70 1/70 0 1[Ves 0
Vez| = [ 1/t —2/7 1/Tol Vea | + "ID/CZ] (5)
Veu ~-1/7 0 0 Il L=1p/C
Equation (5) can be expressed in terms of a normalized
dynamical representation through the wuse of
dimensionless variables and parameters as follows:
[X 2 1 O)px 0
y} = [ 1 -2 1 [y] o —BID] ©)
| -1/4 0 0}lz —CI,
fx x A dX/dt Vs To/T1
y y B] = |dY/dt Ve (To/t2)/nVr| (T)
1z z C dZ/dT VCI (To /Tl)/nVT

where the time constants 7y = C,R = C3R,7; = C;R and
T=1t/t It is seen from (7) that X = (X + 2X) and
consequently the diode equation /p can be expressed as
In=Is{exp[Veal(nVr)]-1} = Is{exp[Y]-1}, resulting in
I{exp[X +2X] - 1} =i, — I ®)
Where Iexp(Y) = Isexp(X +2X) Alternatively, the

dynamical representation in (6) can also be written in a
jerk representation as

aes

~X (4 + Bip) — X(3 + 2Bip) + AX - CI, )
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It is obvious that a jerk model in (11) is described in
the form shown in (4) as ¥=J(Fx,x)+hR . In
addition, the proposed circuit shown in Fig.1 has been
designed with components R = 1 kQ, C; = 0.1 uF, G, =
C; = 10 pF, Rg is a potentiometer. The Diode model is
IN4148  where  I¢=14.11x10°,  #=1.984, and
V1=25.85x10>. The counting number of electronic
components is only 8 and is therefore reduced by 43%
compared to that of 14 counts in [6]. In particular, only a
single op-amp is necessary for circuit implementation.

I1. DYNAMICAL PROPERTY ANALYSIS
AND NUMERICAL SIMULATIONS

Dynamic properties were mathematically analyzed
using nonlinear theorems and numerically investigated
using MATLAB. The initial condition was set at (0.1, 0,
0), which iles in the basic of attractor. The chaotic
behaviors were simulated .using the Fourth-order Runge-
Kutta method with time step size of 5x10°, The system
(7) is invariance under the transform (x, y, z) — (-x,-y, 2),
i.e. is symmetric around the z-axis and remains confined
to the positive half-space with respect to the z state
variable. The divergence of flow of the dynamic system
is described as
ay , 8z

=2, —4 % 10°
Ox

4
dy oz T

(10)

Therefore, the chaotic system (7) is a dissipative system
with an exponential rate of contraction as

av

= exp (-é) = exp(—4 x 10%) 11
L
+ +
X - T S) Xr = é—-ﬁh
Y — Y,
2 —-on Lzh—0
+ —l S +
L i
TRANSMITTER RECIEVER

Figure2. Principle scheme of a general secure
communication system with masking technique

In other words, a volume element V0 becomes smaller by
the flow in time ¢ into a volume element ¥0exp (-f). Each
volume containing the trajectories shrinks to zero as f—
at an exponential rate of -4x10°. System orbits are
ultimately confined into a specific limit set of zero
volume, and the system asymptotic motion settles onto an
attractor of the system. In order to investigate the linear
stability, the system (5) was linearized, and a single fixed
point was found at (0, 0, 0). The Jacobian matrix of
partial derivatives is defined as

—Z/To 1/T0 0
J= V% ~Cro-B, Un| a2
_1/71 —ﬁC1 0




TR e

where the parameters B¢y = {iexp(Ve,/nVp)}/nVrCy
and  Be; = {Isexp(Veo /nVy)}/nVrC,. The  resulting
eigenvalues of the Jacobian matrix in (14) evaluated at
the fixed point are consequently equal to

A = —6.1531
1, = 1.0765 + 3.8852i
A3 = 1.0765 — 3.8852i (13)

It is evident from (13) that the fixed point is a saddle
focus node as the eigenvalue 1, is negative real value and
Ayzare a pair of complex conjugate eigenvalues with
positive real parts.

III. SECURE COMMUNICATION SYSTEMS BASE
ON CHAOTIC MASKING

There are number of possible methods that have been
developed for synchronization in chaotic communications.
In the masking method, synchronization is achieved by
simply if the conditional Lyapunov exponents for the
systems are negative for the given operating parameters.
Thus, one could simply recover the message signal from
the received chaotic signal through by means of a
subtraction at the receiver. This synchronization is robust
against small perturbations of the carrier signal. In the
chaotic modulation method the message signal becomes
part of the dynamics, which is more robust because of the
greater symmetry between chaotic oscillator and response.
In the chaos shift keying technique the message
information is encoded onto the attractor by means of
modulating a parameter of the chaotic oscillator, typicaily
ina
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Figure 3. Bifurcation diagram of the output V3(x) versus
the bifurcating resistor Ro.

binary manner. In all these three schemes synchronization
is an obvious way of recovering the original information.
Fig.2 shows the principle scheme of a general secure
communication system with masking technique the
transmitter can be used as a single drive system for a
dual-channel transmitter independent of its response
subsystem at the receiver.
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IV. SIMULATIONS AND
EXPERIMENTAL RESULTS

Fig.3 shows the simulation schematics in MATLAB.
Electronic circuit simulation was performed in PSpice
while the experiment was conducted on board using
discrete components. The components value were set at R
=1kQ, C,=0.1 pF, C; = C; = 10 pF, Diode is 1N4148
and an Op-amp is LM741, Ry is 1.2 kQ. Fig. 5 shows the
consistent chaotic attractors in x-y plane obtained from
PSpice simulation and experiment. It is obvious that the
proposed chaotic system circuit truly possesses chaotic
behaviors with a single folded-band topology orbiting
around the fixed point at (0, 0, 0). Fig.4 shows the
bifurcation diagram of the peak of V¢; (X) versus the
parameter Ro, exhibiting a route to chaos. 1

t is seen that the bifurcating parameter Ry can be
tuned for chaos in wide region of 0.8 kQ to 3 kQ. Upon
setting Rg to a value of 1.2 kQ, the chaotic attractors are
displayed in Fig. 3 for a three-dimensional view, an x—y
phase plane, an x—z phase plane, and a y— phase plane.
The attractor of three-dimensional view remains confined
to the positive half-space of the z-axis. Fig.6 shows the
experiment chaotic attractors in x—z plane. Fig.7 shows
the synchronization results, (a) input and recovered
output signal at the receiver, (b) synchronization errors. It
is seen from Fig. 7 that the masked signal can be
retrieved shortly with low errors. In addition, other types
of signals such as rectangular or common human speech
can also be applied to this method.
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Figure 4. Bifurcation diagram of the output V3 (X)
versus the bifurcating resistor Ro.
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Figure 5. Chaotic attractors in three-dimensional view, an
x-y plane, an x—z plane, and a y—z plane.



Figure 6. Experiment chaotic attractors in x—z plane

V. CONCLUSIONS

This paper has presented a very simple autonomous
RC chaotic jerk oscillator with nine electronic
components. The nonlinearity required for chaos is
implemented through the use of a well-known diode
equation. Basic dynamical properties are described
including equilibria, eigenvalues of Jacobian matrix,
chaotic  attractors, time-domain waveforms and
bifurcations. Potential application of such a simple
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Figure 7. Syncronization results; (a) input and recovered
output signal at the receiver, (b) synchronization errors.

autonomous RC chaotic jerk oscillator is presented in
message-masking and synchronization for secure digital
communications. The results show that the chaotically
masked message is fully synchronized at the receiver
through the use of very simple circuit. Consequently, the
proposed new paradigm on secure communication
schemes offers not only a simple mathematical system,
but also very cost-effective circuit and system
implementations.
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Implementation of Réssler Chaotic System through Inherent
Exponential Nonlinearity of a Diode with Two-Channel Chaotic
Synchronization Applications

S. Larptwee and W. San-Um

Abstract—This paper presents a new Rassler chaotic system
using exponential nonlinearity and its application to two-
channel synchronization. The proposed chaotic system exhibits
a chaotic attractor that resembles the original Réssler system
with only six-term in three-dimensional ordinary equation
systems using the exponential nonlinearity. Chaotic dynamics
are described in terms of equilibria, Jacobian matrix, time
domain waveforms, chaotic attractors, and bifurcation
diagram. The circuit implementation is relatively compact and
simple sine the exponential nonlinearity can be achieved by an
inherent nonlinearity of single diode. An application to a two-
channel secure communication are also demonstrated, showing
a fast, low-error and robust synchronization processes.

I. INTRODUCTION

EDWARD LORENZ[1] encountered sensitively dependent
initial conditions of an atmospheric convection model

while performing numerical simulations in 1963 leading
to the discovery of the Lorenz system with seven-terms in
three-dimensional ordinary differential equations and two
quadratic nonlinearities. In 1976, Réssler [2] proposed a
chaotic system with seven terms and a single quadratic
nonlinearity, which is algebraically simpler than Lorenz
system. In addition, a single folded-band attractor of Rossler
system is topologically simpler than a two-scroll Lorenz
attractor. Such Lorenz and Réssler systems have
consequently led to considerable research interests in
searching for new chaotic systems with fewer terms in ODEs
or more complex attractor topology.

Several chaotic systems with fewer than seven terms and
two quadratic nonlinearities continuously been reported as
variants in Lorenz system family [3-7]. Complex three-scroll
and four-scroll attractors based on Lorenz system have also
been suggested through the use of three or more quadratic
nonlinearities [8-10]. On the other hand, simple chaotic
systems with a single nonlinearity similar to Réssler system
are rarely found. In fact, Réssler himself had proposed
another system with six terms and a single quadratic
nonlinearity in 1979. In 1994, Sprott [4] found fourteen
cases with six terms and a single quadratic nonlinearity
through an intensive numerical computer search. Recently,
many simple systems have been proposed in simple Jerk
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equations with single quadratic or non-quadratic
nonlinearities. Despite the fact that these simple Jerk chaotic -
systems with a single nonlinearity potentially resemble the
single folded-band Réssler attractor ,the Kapelan-York [4]
dimension (Dgy) as a measure of complexity is somewhat
lower than the original Réssler attractor that possesses the
greatest value of Dxy =2.1587. This leads to a question of
whether the original Rgssler system in dynamic forms can be
simplified into fewer terms with simple nonlinearity, or
modified for more complex attractor [12-15]. No
simplifications of Rdssler system has never been found so
far. This paper therefore presents a new Réssler chaotic
system using exponential nonlinearity and its application to
two-channel synchronization. The proposed chaotic system
exhibits a chaotic attractor that resembles the original
Rdssler system with only six-term in three-dimensional
ordinary equation systems using the exponential
nonlinearity. An application to a two-channel secure
communication are also demonstrated, showing a fast, low-
error and robust synchronization processes.

II. PROPOSED NEW ROSSLER CHAOTIC SYSTEM USING
EXPONENTIAL NONLINEARITY

Based on the Rossler system proposed in 1979 [7], the
first and the second equations, i.e. =~y -z andy = x+ay,

initiate a normal band of the attractor through an outward

spiral motion into the X-y phase plane. Nonlinear
interactions between x and z variables in the third equation,
i.e.z=b+z(x-c), form an additional folded band to the

overall attractor. It is noticeable that the folded band in
Rossler attractor rises and returns exponentially in z-
dimension especially for positive values of x variable under
the flows. This aspect implies that the third equation may be
modified through the use of an exponential nonlinearity.
Therefore, a new chaotic system is therefore presented in
three-dimensional autonomous ODEs expressed as

X=—y—z
y=x+ay O]
z=-z+bF(x)

where (x,y,z)e ®*are dynamical variables, (a,b)e R* are

system parameters, and F(x) is a nonlinear function required
for chaos. A particularly simple case of the nonlinear
function F(x) is presented using exponential functions. In
other words,
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F(x) = exp(x) (2)

It can be considered from (2) such an exponential
nonlinearity can be implemented through the use of a diode
instead of using a complicated voltage multiplier circuit such
as AD633 chip.

III. DYNAMICS ANALYSIS

The system (1) maintains the first and the second
equations of Réssler system while the third equation has
been simplified into two distinct terms, including the linear
term —z and the nonlinear term AF(x). The existence of
attractor can be described by the divergence of flows as

V.V =0x/ox+3dy/dy+0dz/0z=a~-1. )

For a dissipative chaotic system, p<0 and therefore a is
limited into the region O<a<l. The exponential rate of
contraction is dV/dt =exp(a-1) and hence a volume element
Vo is contracted in time t by the flows into a volume element
Voexp(—t). Each volume containing the system trajectories
shrinks to zero as time ¢ approaches +o. All system orbits
will be confined to a specific limit set of zero volume, and
the asymptotic motion converges onto an attractor. It can be
concluded that the existence of attractors is constant and
independent to the nonlinear term »F(x). For the equilibrium
analysis, linearizing (1) by setting the system of equation
equals zero, i.e.

O=—y—-2z
O=x+ay 4)
0=—-z+be*

The system (4) has a single equilibrium point at (0, 0, 0) and
the Jacobian of the system is

0 -1 -1
J=| 1 a 0
bF' 0 -1

©)

Applying the equilibrium point P into this Jacobian matrix
and analyzing |/A-J|=0 reveals a resulting characteristic
polynomial as follows:

A +(1-a)A*+(bF' —a+1)A+(abF' -1)=0 ©6)

According to the Routh—Hurwitz [9] stability criterion, the
system (1) is unstable when F' < (1 + (1-a)2)/(b-2ab). Note
that dynamic behaviors depend on two parameters a and b,
and can be characterized completely by the plot of parameter
space without redundancy. For all particular values of a and
b in the subsequent numerical analyses, the resulting
eigenvalues | is a positive real number and , and , are a
pair of complex conjugate with positive real parts, indicating
that the equilibrium points are all saddle focus points.
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Fig.1. Bifurcation diagrams exhibiting a route to chaos.
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Fig.3. Time-domain waveforms showing chaotic behaviors.
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Fig. 4. The block diagrams of the transmitter and receiver of two-channel
chaotic synchronizations.

Numerical simulations have been performed in MATLAB
using the initial condition of (x0, y0, z0) = (1, 0, 1). In fact,
the initial condition is not crucial, and can be selected from
any point that lies in the basin of attractor. In order to find
the control parameter that offers the maximum values of
chaoticty and complexity, Fig. 1 shows the bifurcation
diagram of the peak of z (z max) versus the parameters a and
b. It is seen in Fig. 1 that the system exhibits a period-
doubling route to chaos. As for particular illustrations, the
control parameter at ¢=0.35 and b=0.0007 is chosen in
simulations of dynamical behaviors. The chaotic attractors
are displayed in Figs. 2(a), 2(b), 2(c) and 2(d) for a three-
dimensional view, an x—y phase plane, an x— phase plane
and a y—z phase plane, respectively. It is apparent in Fig. 2
that the attractor of the proposed system has a single-scroll
topology, and potentially resembles the existing Réssler
aftractors in all phase planes. Fig. 3 shows apparently
chaotic waveforms in time domain. It can be seen that the
three signals are random in both amplitudes and frequencies.
The DC offset is zero since the equilibrium point is at (0, 0,
0).

IV. APPLICATIONS TO TWO-CHANNEL SECURE
COMMUNICATION SYSTEMS

The chaotic synchronizations provide two input and two
output messages [16-23]. Fig. 4 shows the block diagrams of
the transmitter and receiver of two-channel chaotic
synchronizations. At the transmitter, a modified Réssler
attractor described in (1) can be used as a single drive
system for a dual-channel transmitter independent of its
response subsystem at the receiver as follows:

X=—-y—2z
y=x+035y ™
z=0.0007¢" -z

Based on such a modified rossler system using diode
equation as shown in Fig. 4, the dual channel transmitter
consists of two transmitter and receiver signals. The first
transmitter signal is s, (t) = x, (t) + i; (t) where x, (t) is a
chaotic signal and i; (t) represents the first original input
which is transmitted. The second transmitter signal is s, (t) =
z,(t) + i, (t) where z,(t) is a chaotic masking signal and #; (t)

y .__N_.._"___ AN
R R
Zo—W— -AI A >
+ X As ——e =X
R C -
-x .-__m_"—_ll_ """
kiR R
'y ’_% _Az M >
+ y As ——o =)
R

Fig 5. Circuit design of the proposed Rossler chaotic system using
exponential nonlinearity.
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Fig 6. Simulink model of the proposed Réssler chaotic system using
exponential nonlinearity.
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Fig 7. Circuit implementations of the proposed chaotic system and its
synchronization systems.
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Fig 9. Simulated and measured chaotic attractors at different parameter
values.

represents the second original message which is transmitter.
At the receiver, a modified rossler attractor described in (1)
can be used as single response subsystem for dual-channel
receiver as follow:

xr = _y" - Z?‘
y,=x,+035y, (®)
z, =0.0007e" —

With reference to Fig.4, the dual-channel receiver consist of
produces a cmasking signal x, (t) and z, (t), respectively when
the receiver synchronizes with s, (t), then x, (t) = x, (t). The
input signal i; (t) can be recovered as #; (t) = s, (t) — x,. () = x,

O+ O -x® =i

Voltage (V)
»

v

)!Q_ Synchronized Signal

-~ < oo &

(3) Signal

i i Synchronized Signal

g Time {l). Time (s}
(b} Pulse Signal Synchronization in Channet 2

Fig 10. Simulated and measured synchornized signals in two channels.
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Input Sinusoidal Signal Input Pulse Signal

(a) Synchronization in Chanel 1 (b} Synchronization in Chanel 1

Fig 11. Phase-space plots of two chanel signals showsing a highly
correlated transmiteed and received sigansl.

Similarly when the receiver synchronizes with s; (t), then z,
(t) = z.(t). The input signal i, (t) can be recovered as i, (t) =
(0 =2z (t) =z @) + i;(t) — x(t) = i, (t). As for a simple
example, the first transmitter input, i, (/) = 0.1 sin 2nf9),
where the frequency f,= 1000 Hz and the second transmitted
input i, (t) is a pulse-train rectangular wave form with an
amplitude 0.1 and the frequency f, = 1000 Hz. Self-
synchronize can be achieved over a wide range of initial
condition e.g. at the transmitter [x, (0), y, (0), z, (0)] =1, 0, 1]
and at the receiver [x,(0), ¥, (0), z,(0)] = [3, 0, 3].

V. EXPERIMENTAL RESULTS

Fig.5 shows the circuit diagram of the proposed new
Rossler chaotic system using exponential nonlinearity. The
circuit consists of three integrator section, including op-
amps A4;, 4, and 4;. The inverting amplifiers are 4, and A4s.
All operational amplifiers are implemented by TLO84CN
with 9-V power supply. The diode is IN4001. The state
equations from nodal analysis is given by where k;R =23.28
KQ, and k2 R = 0.7 KL are scaling parameters. The value of
the R = 10 KQ and C=InF. In order to verify in terms of
block diagram, Fig 6 shows the Simulink model of the
proposed Réssler chaotic system using exponential
nonlinearity when a =0.35 and b = 0.0007. Fig 7 shows
circuit implementations of the proposed chaotic system and
its synchronization systems. Fig 8 depicts the measured
chaotic output signals. Fig 9 shows the simulated and
measured chaotic attractors at different parameter values. It
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can be seen from Figs. 8 and 9 that the results from both
simulations and experiments are closely resemble. Fig 10
shows the simulated and measured synchornized signals in
two channels. Fig 11 shows phase-space plots of two chanel
signals showsing a highly correlated transmiteed and
received signals, indicating that the two signals are
completely synchronized.

CONCLUSIONS

This paper has presented a new Rdssler chaotic system
using exponential nonlinearity and its application to two-
channel synchronization. In comparisons to other existing
implementation of Rossler-based chaotic system, the
proposed chaotic system exhibits a chaotic attractor that
resembles the original Rossler system with only six-term in
three-dimensional ordinary equation systems using the
exponential nonlinearity. All dynamical behaviors were
investigated through equilibria, Jacobian matrix, time
domain waveforms, chaotic attractors, and bifurcation

diagram. Cost-effective implementations of chaotic circuits

were based on linear op-amps, capacitors, resistors, and a
single diode employed as a nonlinear component. An
application to a two-channel secure communication was also
demonstrated through sinusoidal and pulse signals. The
synchronization could recover the transmitted signals with
fast and robust synchronization processes. The proposed
circuit offers a potential alternative to robust cost-effective
nonlinear oscillators in communications and controls
applications.
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