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 The typical logistic map has been utilized in a variety of applications such as 

in biological modeling and secure communications. Nonetheless, such a typical 

logistic map has only a single control parameter that sets all dynamic behaviors. This 

paper therefore introduces a new arbitrary power in the quadratic term in order to 

control stability of the system. The addition arbitrary power subsequently increases 

the degree of freedom of the logistic map and provides versatile responses as well as 

the flexibility of the system. Dynamic properties are described in terms of Cobweb 

plots, bifurcations, Lyapunov exponents, and chaotic waveforms in time domain. 

Experimental results utilize the Ardino microcontroller to generate chaotic waveforms 

with a relatively flat spectrum in frequency domain. The experimental results is to 

understand behaviors of the impact of Chaos theory to organization management and 

how basic and practice of management, as well as the role of managers and 

management guidelines for engaging in the practice of organization management. A 

current view of management theory stresses the changing nature of the external 

environment and the need to understand and address these external forces for change. 

Participation and the role of systems theory and the theory of organization to 

organization management process focused. 
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Chapter 1 

Introduction 

 

1.1 Introduction 

 This chapter gives a background of a research approaches, involving 

dynamical system and chaos theory. It also includes the motivation, statement of 

problem, research scope, research objective, expected outcomes and definition of 

technical terms. 

 

1.2 Background 

 Isaac Newton has brought the idea of modeling the motion of physical 

systems with equations. It was necessary to invent calculus along the way, since 

fundamental equations of motion involve velocities and accelerations, which are 

derivatives of position. The greatest single success was the discovery that the motion 

of the planets and moons of the solar system resulted from a single fundamental 

source: the gravitational attraction of the bodies. The circular, elliptical, and parabolic 

orbits of astronomy were no longer fundamental determinants of motion, but 

approximations to laws specified with differential equations. Subsequent generations 

of scientists extended the method of using differential equations to describe how 

physical systems evolve. Such sets of equations are called dynamical systems. The 

theory of dynamical systems describes phenomena that are common to physical and 

biological systems throughout science. It has benefited greatly from the collision of 

ideas from mathematics and these sciences. The goal of scientists and applied 

mathematicians is to find nature’s unifying ideas or laws and to fashion a language to 

describe these ideas. 

 Recently, an active research field in modern physics is that of nonlinear 

dynamics and the subfield of chaotic dynamics. Although chaotic dynamics had been 

known to exist for a long time, its importance for a broad variety of applications 

began to be widely appreciated only within the last decade or so. Concurrently, there 

has been enormous interest both within the mathematical community and among 
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engineers and scientists. The field continues to develop rapidly in many directions, 

and its implications continue to grow. 

 The chaos theory is a complicated and disputed mathematical theory that 

seeks to explain the effect of seemingly insignificant factors. The chaos theory name 

originates from the idea that the theory can give an explanation for chaotic or random 

occurrences. The first real experiment in the chaos theory was done in 1960 by a 

meteorologist, Edward Lorenz who was working with a system of equations to predict 

what the weather would likely be. 

 In 1961, he wanted to recreate a past weather sequence, but he began the 

sequence mid-way and printed out only the first three decimal places instead of the 

full six. This radically changed the sequence, which could reasonably be assumed to 

closely mirror the original sequence with only the slight change of three decimal 

places. However, Lorenz proved that seemingly insignificant factors can have a huge 

effect on the overall outcome. The chaos theory explores the effects of small 

occurrences dramatically affecting the outcomes of seemingly unrelated events. 

 The chaos theory has been applied to many scientific areas, including 

finance. In finance, the chaos theory has been used to argue that price is the last thing 

to change for a security. Using the chaos theory, a change in price can be determined 

through mathematical predictions of the following factors: a trader's personal 

motivations such as doubt desire or hope that are nonlinear and complex, changes in 

volume, acceleration of changes and momentum behind the changes. The application 

of the chaos theory to finance remains controversial. 

 A basic logistic map use to apply into many applications in now a day. 

Whether it is population biology field, epidemiology field, economics research field 

and so on. The logistic map has been analyzed in many papers, being one of the topics 

of interest in dynamical systems with chaotic behavior. The behavior of logistic map 

at stability can be linearly modeled and the controller can be designed by using the 

nonlinear control conceptions. To design the controller, the transfer function of 

converters are needed which is usually a complicated task. 

 The classic problem in management require solutions to keep organization 

stable and continue improves. Many researches try to control stability by of 

organization management using chaos such as logistic map. This work therefore 
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focuses on a framework design to control logistic map and implement in to 

organization management. 

 

1.3 Motivations 

 There are many companies and corporations today on the market, which is 

confirmed by regularity, but also there are many examples of incorrect decisions of 

their management, exposed to ruthless struggle for survival, almost like that in nature. 

Fighting for survival, the phases of the lifecycle are characteristics of living 

organisms. In organisms are very difficult to determine the causes and consequences 

of their actions. They behave almost chaotic, and chaos can only be established by 

means of probabilities, the approximate value of the so-called Fuzzy process. The 

interaction between an organization and its environment is not predictable. Chaos 

theory explains many natural phenomena and found its application in many areas of 

human endeavor. The application of this theory has brought many new in explaining 

the behavior of business organizations in terms of eddy environment, and their 

transitions from a state of instability in the state of stability. 

 

1.4 Statement of Problem and Hypothesis  

 Predicting chaos is hard, controlling chaos is easier. Long term predictions 

of deterministic chaos are hard, since even very small amounts of noise can change 

the motion significantly. Short term predictions and even medium term predictions of 

chaos are not that difficult, since the motion is governed by a deterministic equation, 

plus some small noise Simulation of managing a real world social organization or 

business entity 

 

1.5 Objectives  

15.1 To study a new arbitrary power in the quadratic term in order to control 

stability of the system. 

15.2  To apply a new arbitrary power in the quadratic term in order to 

control stability of the system into organization management 

15.3  Research Scopes  
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15.3.1 Study a new arbitrary power in the quadratic term in order 

to control stability of the system. 

15.3.2 Apply a new arbitrary power in the quadratic term in order 

to control stability of the system into organization 

management 

15.3.3 Apply chaos theory to organize management  

15.4 Expected Outcomes 

15.4.1 Gain knowledge on a new arbitrary power in the quadratic 

term in order to control stability of the system. 

15.4.2 Gain framework on a new arbitrary power in the quadratic 

term in order to control stability of the system. 

15.5  Definitions  

15.5.1 Chaos theory is a field of study in mathematics, with 

applications in several disciplines including meteorology, 

sociology, physics, engineering, economics, biology, and 

philosophy. Chaos theory studies the behavior of dynamical 

systems that are highly sensitive to initial conditions—a 

response popularly referred to as the butterfly effect. Small 

differences in initial conditions such as those due to 

rounding errors in numerical computation yield widely 

diverging outcomes for such dynamical systems, rendering 

long-term prediction difficult in general. This happens even 

though these systems are deterministic, meaning that their 

future behavior is fully determined by their initial 

conditions, with no random elements involved. In other 

words, the deterministic nature of these systems does not 

make them predictable. This behavior is known as 

deterministic chaos, or simply chaos. 

15.5.2 Exponential growth occurs when the growth rate of the 

value of a mathematical function is proportional to the 

function's current value. Exponential decay occurs in the 

same way when the growth rate is negative. In the case of a 
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discrete domain of definition with equal intervals it is also 

called geometric growth or geometric decay 

15.5.3 Polynomial is an expression consisting of variables and 

coefficients that involves only the operations of addition, 

subtraction, multiplication, and non-negative integer 

exponents. An example of a polynomial of a single 

indeterminate. Polynomials appear in a wide variety of 

areas of mathematics and science. For example, they are 

used to form polynomial equations, which encode a wide 

range of problems, from elementary word problems to 

complicated problems in the sciences; they are used to 

define polynomial functions, which appear in settings 

ranging from basic chemistry and physics to economics and 

social science; they are used in calculus and numerical 

analysis to approximate other functions. In advanced 

mathematics, polynomials are used to construct polynomial 

rings and algebraic varieties, central concepts in algebra and 

algebraic geometry. 

15.5.4 MATLAB is advanced computer program (High-level 

Language) for technical computing that includes numerical 

computation. Complex graphics And replication to visualize 

the image is simple and clear name MATLAB stands for 

Matrix Laboratory original MATLAB program is written to 

use in the calculation of matrix or a matrix software which 

MATLAB is a program developed unceasingly. The 

program is easy to understand. And complex programming 

When put to use, and can see the results quickly. For this 

reason it makes MATLAB program has been used 

extensively in various fields. 

 

  

 



Chapter 2 

Related Theories and Literature Reviews 

 

2.1  Introduction  

 This chapter 2 presents a synthesis of the related theory, particularly a key 

concept of chaos theory, nonlinearity, bifurcation, strange attractor, fractal and self-

organization, implication to issue managements and implication to crisis 

managements in with knowledge. Literature reviews on existing chaotic maps and its 

control techniques will be presented. 

 

2.2  Related Theory 

 2.2.1 Key Concept of Chaos theory 

 Chaos Theory is an alternative name for nonlinear dynamical system theory. 

The latter is term for the study of phenomena such as attractors, bifurcations, chaos, 

fractals, catastrophes, and self-organization, all of which describe systems as they 

change over time. This thesis will examine the basic patterns of movement, and their 

applications to a wide range of psychological theories. Chaos itself is a particular 

nonlinear dynamic and is perhaps the centerpiece of this field of study. In chaotic 

phenomena, seemingly random events are actually predictable from simple 

deterministic equations. Thus, a phenomenon that appears locally unpredictable may 

indeed be globally stable, exhibit clear boundaries, and display sensitivity to initial 

conditions. The latter property is also known as the “Butterfly Effect”. Chaos has a 

close relationship to other dynamics, such as attractors, bifurcations, fractals, and self-

organization. 

 

 2.2.2 Nonlinearity 

 Nonlinearity is defined as a relationship which cannot be explained as a 

linear combination of its variable inputs. Nonlinearity is a common issue when 

examining cause-effect relations. Such instances require complex modeling and 

hypothesis to offer explanations to nonlinear events. Nonlinearity without explanation 

can lead to random, and unforecasted outcomes. 
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Figure 2.1 Some well-known nonlinearity that can be used for chaos generation. 

 

 Some nonlinear systems have no solutions whatever to a given initial value 

problem. On the other hand, some systems have infinitely many different solutions. 

Even if a solution of such a system, this solution need not be defined for all time. For 

example, what happens if the initial condition of system very so slightly? Does the 

corresponding solution very continuously? This problem is easy clear for linear 

system but absolutely not clear in nonlinear case. This means that the underlying 

theory behind nonlinear system of differential equations is quite bit more complicated 

than that for linear system. Fig.2.1 shows some well-known nonlinearity that can be 

used for chaos generation. 

 

 2.2.3 Bifurcation 

 Bifurcation in a term of dynamical system, a bifurcation is a period doubling, 

quadrupling, etc., that accompanies the onset of chaos. It represents the sudden 

appearance of a qualitatively different solution for a nonlinear system as some 

parameter is varied. The illustration above shows bifurcations of the logistic map is 

the parameter r, which is varied. Bifurcations come in four basic varieties; flip 
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bifurcation, fold bifurcation, pitchfork bifurcation, and transcritical bifurcation. 

Fig.2.2 depicts the bifurcation diagram of the simple Logistic map showing effects of 

the parameter r in the equation. 

 Bifurcations describe changes in the stability or existence of fixed points as a 

control parameter in the system changes. As a very simple explanation of a 

bifurcation in a dynamical system, consider an object balanced on top of a vertical 

graph. The mass of the object can be thought of as the control parameter. As the mass 

of the object increases, the graph deflection from vertical, which is x, the dynamic 

variable, remains relatively stable. But when the mass reaches a certain point, at the 

bifurcation point the graph will suddenly buckle. Changes in the control parameter 

eventually changed the qualitative behavior of the system. 

 

 

 

Figure 2.2 Bifurcation diagram of the simple Logistic map showing effects of the   

       parameter r in the equation 
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 2.2.4 Strange Attractor 

 Attractor is a set of states of a dynamic physical system toward which that 

system tends to evolve, regardless of the starting conditions of the system. Also 

explains in an organizing principle, shape and nature or state of affairs, which may 

seem like a phenomenon that often tends to return to its evolution, no matter how 

random each moment. An attractor is informally described as strange if it has non-

integer dimension or if the dynamics on it are chaotic. 

 

 

 

Figure 2.3 Strange attractor and its forming mechanisms of the Lorenz system. 

 

 Some attractor patterns can be easily mapped via traditional analysis. For 

example, the straight line of a static attractor maps an outcome that continues 

unchanged at a given level; the general waving line of a dynamic attractor maps an 

outcome that varies periodically and predictably about a mean. However chaotic 

situations are characterized by strange attractors where outcomes wander constantly 

and unpredictably within a bounded range. Maps of such situations, in which multiple 

variables are pulling events in contradictory directions, may resemble scribbled 

doughnuts or butterfly wings. However, the underlying order represented by the 
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attractor constrains excessively erratic behavior and imposes a structure even though 

discrete events may be unpredictable within the bounds of that structure. Fig.2.3 

illustrates the strange attractors and its forming mechanisms of the Lorenz system. 

 On a social level, attractors have been seen as indices of human agency and 

free choice. For example, deterministic societies with little room for human change 

follow the patterns of static or dynamic attractors; societies that allow some variation 

within an overall conformity can be mapped; societies patterned after linked offer still 

more freedom for human choice, and so forth On an individual level, psychological 

constructs like personality may operate in a manner analogous to an attractor. This 

idea may explain why personality variables often have low predictability for a single 

behavioral incident, but a pattern of behavior reflecting a personality style can be 

established. Some researchers view organizational culture as a strange attractor, a 

common set of values that informs behavior but is not articulated in words as a 

corporate mission statement. 

 

 

 

Figure 2.4 Examples of simple frcatal in trinagular geometry. 
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 2.2.5 Fractal and Self Organization 

 Fractal is an object or quantity that displays self-similarity, in a somewhat 

technical sense, on all scales. The object need not exhibit exactly the same structure at 

all scales, but the same type of structures must appear on all scales. A plot of the 

quantity on a log-log graph versus scale then gives a straight line, whose slope is said 

to be the fractal dimension. The prototypical example for a fractal is the length of a 

coastline measured with different length rulers. The shorter the ruler, the longer the 

length measured, a paradox known as the coastline paradox. Fig.2.4 shows examples 

of simple fractal in triangular geometry. Additionally, Fig.2.5 shows the well-known 

Mandelbrot fractal demonstrating an infinite shape of chaos. 

 Self Organization is the ability of the system to be classified as a natural 

component or components of the target effects, under appropriate conditions but 

without the help of an external source. It is as if the system knows how to do its own 

thing. Many natural systems such as cells, chemical compounds, galaxies, organisms 

and planets show this property. Animal and human communities too display. In term 

of chaotic systems, self-organization is the system that has ability to generate their 

own new forms from inner guidelines rather than the imposition of form from outside. 

 

 

 

Figure 2.5 The well-known Mandelbrot fractal demonstrating an infinite shape of   

       chaos. 
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 2.2.6 Implication to Issue Managements 

 Chaos theory has emerged as new currencies in social sciences in general 

and in systems design and management, and in futuristic studies in individual. Chaos 

theory is practical for structuring up-and-coming social concerns and interest-group 

behavior, the province of issues management. Issues management attempts to tell the 

variance trends in public opinion so that an organization can respond to them before 

they increase into serious tension which breaches the social structure and eludes 

control-that is, before chaos sets in. 

 Successful issues management has the ability to show the interplay between 

factors as diverse as social concerns, news events, cultural values, and corporate 

goals, an approach which demands a high level of context sensitivity. In a process 

similar to analyzing fractal patterns, issues managers look for relationships between 

emerging social concerns, and then seek correspondences between industry or 

organizational actions on a micro scale, and the social context on a macro scale.  

 Such linkages are often invisible linear cross-sectional analysis. It manifests 

itself through a holistic analysis of the model. The manager explains how complex 

fractions. They refined their recognition is a key condition, which works like a 

different point of coupling between different events; By using these key words to 

search the database computer, they are essentially following the attractor associated 

random events into the corresponding polymorphous problem. 

 As well as issues that interest groups might best be understood in terms of 

chaotic systems. The separation of the individual often is dissatisfactions easy they 

were meant when they find each other. They gather strength and sophistication when 

lobbying groups have been involved. Interest groups often resemble a chaotic system 

in such a break.  As a result, it may be difficult to find the right spot. For the use of 

communication or even to see what the real problem is. Intel faced with such a 

situation during the 1994 controversy about computer chips Pentium started as a 

trickle of messages posted on the Internet news Pentium, user complaints cascades 

over the Internet to leak into the group. Others were picked up by journalists become 

common knowledge and profoundly redefined Intel's reputation for cutting edge 

technology. 
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 As with many technological controversies, the combination point for these 

unequal groups was very likely concern about institutional, not electrical, power. Thus 

the integrating ideology of interest groups acts as a strange attractor: a set of principal 

beliefs, assumptions, values, and customs that powerfully govern the behavior of 

individual constituents. However, the attractor is often clear only after the fact; it 

would be difficult to tell the difference it in the original complaint, or to identify it 

along the way by sampling group member’s protests. From a practical standpoint, 

therefore, chaos theory offers little help in predicting the evolution or outcome of 

interest group activities, but it does suggest that the most efficient way to coexist with 

interest groups is to look beyond their immediate demands and identify the true 

attractor. Corporating social responsibility can be understood as an effort to 

accommodate such attractors by fitting the organization into them rather than by 

attempting to change them.  

 In fact, the chaotic nature of interest groups severely limits public relations 

ability to ‘manage’ such groups, so that efforts to reshape a group’s perceptions, 

whether through education, negotiation, or coercion, often have little impact. 

Attractors resist change, regardless of outside pressures, because chaotic systems are 

inherently reflexive. Such systems follow their own logic; while their inherent 

instability makes change inevitable, external forces have limited power to affect the 

timing or nature of the change.  

 A similar dynamic governs the issue that comes out of nowhere, the 

emerging social concern that comes to dominate public attention virtually overnight. 

On the one hand, attractors in the form of dominant ideologies resist change. On the 

other hand, positive feedback-r accumulated dissonance within the system-constantly 

works against the status quo. As a result, after a number of symmetrical iterations, a 

chaotic system becomes vulnerable to destabilization even by very small changes-the 

classic “straw that broke the camel’s back”. In a social context, the chaos model 

shows that issues can develop a critical mass very quickly, so that radical opinion 

change “does not require that all configurations within a given culture be self-similar, 

but when enough of them are, initial perturbation will have large-scale effects” 

 This vulnerability of chaotic systems to small changes explains why 

organizations can be caught off guard by initially small-scale events that undergo 
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catastrophic social amplification. Such situations are often dominated by large issues 

of timing and context against which public relations measures have little efficacy.  

 

 2.2.7 Implification to Crisis Managements   

 Chaos theory provides a particularly good model for crisis situations. 

Typically a crisis forms as a sequence of events that seems, over time, to gather 

volume and complexity with increasing speed. Its dynamic therefore resembles that of 

a chaotic system as it iterates through increasingly complex phases toward a 

disordered state. At the onset of a crisis, an organization may have power to influence 

events, but after a certain escalation point, it often loses this capacity.  

 Crises therefore act as bifurcation points that permanently redefine an 

organization in a new and unexpected light. Indeed, some theorists define a crisis as a 

point in an organization’s history which irreversibly changes its culture and business; 

it is this criterion that distinguishes a true crisis from a mere bad event.  Nonetheless, 

chaos theory stresses that these cataclysmic moments are not random, but rather the 

culmination of accumulated ‘noise’ within the system itself put another way, certain 

organizations contain flaws within themselves that amplify over time to self-generate 

crises independent of outside factors. On the one hand, traditional management theory 

stresses the role of negative feedback, a regulatory mechanism by which organizations 

preserve their status. However, chaotic organizations fall prey to positive feedback in 

that their managerial shortcomings amplify over time until they breed a crisis that 

transforms them permanently. 

 NASA’s evolution toward the Challenger disaster exemplifies the effect of 

such dysfunctional organizational attractors. Writing from a Freudian standpoint, 

Schwartz argued that the pre-Challenger NASA had become enthralled with an 

organizational “fantasy” of perfection and invulnerability: “the business of NASA had 

become the creation of the image of American society’s perfection.“ Indeed, for all 

NASA employees “the motivational base of organizational life” had become this 

sense of perfection; in terms of chaos theory, the notion of NASA’s infallibility 

functioned as an organizational strange attractor. 

 Amplification of this strange attractor through successive shuttle launches 

led directly to the attractor’s sudden reversal. Before the Challenger, NASA managers 
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had repeatedly sent shuttles into space with safety defects, thereby intensifying the 

sense that the agency could do anything: “it was largely because of its history of 

success, and the attendant attribution of perfection, that NASA developed the ‘can’t 

fail’ mentality. “ Each time disaster failed to materialize, managers would take a 

larger risk with the following launch, thereby amplifying defects in successive 

iterations of the shuttle launches. 

 The Challenger explosion marked a bifurcation in this cycle of positive feed- 

back. It brought to a head what some researchers have termed the “Challenger 

Chernobyl syndrome” the widespread realization that scientific competence cannot be 

taken for granted anymore and thus marked a critical shift in attitudes toward 

technological expertise. Indeed, the tragedy wholly reversed the space agency’s image 

so that its new attractor became incompetence and bad luck. The power of the new 

attractor has been confirmed in public notice of NASA’s misfortunes since the 

Challenger: satellite transmission failures, Hubble telescope repairs, and cutbacks in 

funding. Multiple shuttle launch postponements, meant to signal caution, now appear 

to corroborate technical incompetence. 

 Chaos theory also lends structure to ongoing low-level conflicts between an 

organization and its publics. Often such chronic friction comes from misperceptions 

that cannot be extinguished permanently, or misinformation that resists all efforts to 

correct it. Recurrent rumors exemplify this pattern. Typically, as a rumor is reiterated 

over time, it acquires variations so that each account differs from the next; although 

details may change in the telling, it retains elements of its original structure. In chaos 

theory terms, this characteristic suggests that rumors follow their own strange 

attractors that impose “a recognizable configuration of meaning or action in ever-

changing and unique iterations,...unpredictable yet patterned. “ Such attractors may 

underlie persistent “urban legends” that express dominant cultural attitudes.  

 Organizations often try to combat rumors with facts. However, if rumors are 

indeed chaotic systems, facts will have little permanent effect against the underlying 

cultural anxieties that govern response to a given product, company, or technology.  
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2.3  Literature Reviews on Chaotic Maps and its Control Techniques 

 2.3.1 Logistic Map 

 The logistic map is a polynomial mapping of degree 2, often cited as an 

archetypal example of how complex, chaotic behavior can arise from very simple 

non-linear dynamical equations. The map was popularized in a seminal 1976 paper by 

the biologist Robert May, in part as a discrete-time demographic model analogous to 

the logistic equation first created by Pierre François Verhulst. This nonlinear 

difference equation is intended to capture two effects; First, the reproduction where 

the population will increase at a rate proportional to the current population when the 

population size is small. Second, starvation where the growth rate will decrease at a 

rate proportional to the value obtained by taking the theoretical "carrying capacity" of 

the environment less the current population. However, as a demographic model the 

logistic map has the pathological problem that some initial conditions and parameter 

values lead to negative population sizes. Typically, the logistic map is expressed as  

 

                                                                       (2.1) 

 

The bifurcation parameter r is shown on the horizontal axis of the plot and the vertical 

axis shows the possible long-term population values of the logistic function. The 

bifurcation diagram nicely shows the forking of the possible periods of stable orbits 

from 1 to 2 to 4 to 8 etc. Each of these bifurcation points is a period-doubling 

bifurcation. The ratio of the lengths of successive intervals between values of r for 

which bifurcation occurs converges to the first Feigenbaum constant. 

 

 2.3.2 Henon Map 

 The Hénon map is a discrete-time dynamical system. It is one of the most 

studied examples of dynamical systems that exhibit chaotic behavior. The Hénon map 

takes a point (xn, yn) in the plane and maps it to a new point 

 

   

     (2.2) 
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The map depends on two parameters, a and b, which for the classical Hénon map 

have values of a = 1.4 and b = 0.3. For the classical values the Hénon map is chaotic. 

For other values of a and b the map may be chaotic, intermittent, or converge to a 

periodic orbit. An overview of the type of behavior of the map at different parameter 

values may be obtained from its orbit diagram. 

 

2.4  Related Publications 

 

Table 2.1 summary of related publications 

Authors Titles 

J. T. Ambadan and  K B. Joseph [1] 
Asymmetrical Mirror Bifurcations in 

Logistic Map with a Discontinuity at Zero 

J. Gao et al. [2] 
The Construction of the Cubic Logistic 

Chaotic Function Family 

M. Pariazar et al. [3] 
Chaos theory and application in sells 

management 

Z. Hao  et al. [4] 

Research on characteristics of chaos in 

enterprise strategic system and chaos 

management 

B.M. Khoshroo and H. Rashidi [5] 

Towards a Framework for Agile 

Management Based on Chaos and 

Complex System Theories 

M. Rania and R. Agarwalb [6] 
Generation of fractals from complex 

logistic map 

X. Liu [7] 
The impaction of non-linearity dynamics 

theories in management 

E. Campos-Cantóna et al. [8] A family of multimodal dynamic maps. 

X. Ping Zong et al. [9] 
Control of arbitrary periodic orbit of 

Logistic Map 

A. G. Radwan [10] On some generalized discrete logistic maps 
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Table 2.1 summary of related publications  (Cont.) 

Authors Titles 

E. A. Levinsohn et al. [11] 
Switching induced complex dynamics in 

an extended logistic map 

J. A. de Oliveira et al. [12] 

Relaxation to Fixed Points in the Logistic 

and Cubic Maps: Analytical and Numerical 

Investigation 

M. D. Shrimali [13] Delayed q-deformed logistic map 

S. C. Hunga and M. F. Tub [14] 
Is small actually big? The chaos of 

technological change 

S. Mesbaha [15] 
One-dimensional map-based neuron 

model: a logistic modification 

 

 As shown in Table 1, J. T. Ambadan and K. B. Joseph [1] have studied the 

properties of the logistic map with a negative control parameter which is a variant of 

the standard logistic map with a positive control parameter. In this case it is found that 

the map gives asymmetrical mirror cascades with a discontinuity at zero (From here 

onwards, the logistic map with negative control parameter is termed as Discontinuous 

Logistic Map: DLM). Compared to the standard logistic map the bifurcation in the 

DLM occurs earlier and this hastens the onset of chaos. The findings are in agreement 

with the complex features observed in the behaviour of certain experimental systems. 

Even though asymmetrical in nature the map preserves the universality of the 

Feigenbaum constant δ . 

 J. Gao et al [2] presents that chaotic time sequence has huge application 

value. The author analyses the essence of the chaotic time sequence which is created 

by the logistic map, points out the limitation of the logistic chaotic sequence in the 

application and suggests the new scheme which is at the core of constructing cubic 

self-map chaotic function families. In this article, the author discusses the principle of 

constructing cubic function family and analyses the constructing process of the cubic 

logistic chaotic function families. For several functions with a series of special control 

parameters, computer simulation is implemented, and simulation result is listed. 
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Simulation experiment data show the validity and correctness of the structured 

scheme of the chaotic Logistic chaotic function family 

 M. Pariazar et al [3]  propose progresses in calculation tools in recent 

decades have provided us with the possibility of utilizing theories based on existence 

of certain or chaotic non-linear patterns. Chaotic theory with more through study of 

specifications of complicated behavior and data that seem to be random, try to 

recognize order and pattern governing them and use them for predictability future 

trend in short term. Nowadays this knowledge with the help of data behavior analysis 

has provided the base of structural changes in future performance prediction. In this 

article, probability of chaos in daily sales volume in an industrial unit with regard to 

test of strange attractor and biggest Lyapunov exponent has been investigated. Result 

of applying the method discloses existence of some degree of certainty in these data. 

 Z. Hao et al [4] show that in recent years, the nonlinear science which takes 

the chaos theory as the representative is developing rapidly. Applying the chaos 

theory to the enterprise strategy management is useful for the enterprise to adapt to 

the dynamic and complex external environment. This article analyses the chaotic 

characteristics of enterprises strategy system, and gives some thoughts and measures 

of chaos management from the aspects of strategic thought, the strategic coordination, 

the structure, the culture and the ability. The chaos management which possesses all-

pervading applicability resurveys the strategy system by nonlinear and indefinite 

thought. Applying the thoughts and the methods of chaos management, the enterprise 

may consider systematically, perfect its strategic management system, overcome the 

strategic crisis, and possess the ability of defense and protection. 

 B.M. Khoshroo and H. Rashidi [5] presents the necessity of a paradigm shift 

in software project management, particularly with advent of agile methods, nowadays 

is an interesting and challenging issue. The values and principles that have centrality 

in agile thought need new approaches in relation to project management. The main 

causes of this needed paradigm shift are unpredictability and dynamicity of software 

processes, and inefficiency of traditional approaches. With respect to these factors, 

and increasing growth of applying chaos and complex system theories in 

organizational study and strategic management, this research attempts to design a 

framework for managing agile projects based on these two theories. Concepts of these 



 
 

20 

theories will be a lens to investigate software project management and propose new 

practices. Our analyses indicate that chaos theory can further shape strategic decisions 

in comparison to complex system concepts that can further help designing an 

appropriate agile team in the level of people interaction. 

 M. Rania and R. Agarwalb [6] demonstrated remarkably benign looking 

logistic transformations xn+1 = r xn(1 − xn) for choosing x0 between 0 and 1 and 0 < r 

⩽ 4 have found a celebrated place in chaos, fractals and discrete dynamics. The strong 

physical meaning of Mandelbrot and Julia sets is broadly accepted and nicely 

connected by Christian Beck to the complex logistic maps, in the former case, and to 

the inverse complex logistic map, in the latter case. The purpose of this paper is to 

study the bounded behavior of the complex logistic map using superior iterates and 

generate fractals from the same. The analysis in this paper shows that many beautiful 

properties of the logistic map are extendable for a larger value of r. 

 X. Liu [7] presents the application of the dissipative structure theory, 

cooperate theory and chaos theory in management domain is deeply studied and 

broadly extended in west management. But in China, it is not so. This paper 

introduces the application in briefly. The effect of the application of the dissipative 

structure theory, cooperate theory and chaos theory on Chinese enterprises 

management's reform also is discussed. 

 E. Campos-Cantóna et al [8] introduce a family of multimodal logistic maps 

with a single parameter. The maps domain is partitioned in subdomains according to 

the maximal number of modals to be generated and each subdomain contains one 

logistic map. The number of members of a family is equal to the maximal number of 

modals. Bifurcation diagrams and basins of attraction of fixed points are constructed 

for the family of chaotic logistic maps. 

 X. Ping Zong et al [9] represent according to discrete system stability 

criterion, a feedback controller is designed to impose extrinsic incentives to Logistic 

Map. Any desired stability targets including odd orbits can be obtained from Logistic 

Map via feedback controller. This control method applies not only to low periodic 

orbits, but also to the higher periodic orbits. The simulation results verify the 

effectiveness of this method. 
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 A. G. Radwan [10] presents conventional logistic maps have been used in 

different vital applications like modeling and security. However, unfortunately the 

conventional logistic maps can tolerate only one changeable parameter. In this paper, 

three different generalized logistic maps are introduced with arbitrary powers which 

can be reduced to the conventional logistic map. The added parameter (arbitrary 

power) increases the degree of freedom of each map and gives us a versatile response 

that can fit many applications. Therefore, the conventional logistic map is considered 

only a special case from each proposed map. This new parameter increases the 

flexibility of the system, and illustrates the performance of the conventional system 

within any required neighborhood. Many cases will be illustrated showing the effect 

of the arbitrary power and the equation parameter on the number of equilibrium 

points, their locations, stability conditions, and bifurcation diagrams up to the chaotic 

behavior. 

 E. A. Levinsohn et al [11] indicate that switching strategies have been 

related to the so-called Parrondian games, where the alternation of two losing games 

yields a winning game. They can consider two dynamics that, by themselves, yield 

different simple dynamical behaviors, but when alternated, yield complex trajectories. 

In the analysis of the alternate-extended logistic map, they observe a plethora of 

complex dynamic behaviors, which coexist with a super stable extinction solution. 

 J. A. de Oliveira et al [12] shows the manifestation which convergence to a 

period one fixed point is investigated for both logistic and cubic maps. For the logistic 

map the relaxation to the fixed point is considered near a transcritical bifurcation 

while for the cubic map it is near a pitchfork bifurcation. They confirmed that the 

convergence to the fixed point in both logistic and cubic maps for a region close to the 

fixed point goes exponentially fast to the fixed point and with a relaxation time 

described by a power law of exponent −1. At the bifurcation point, the exponent is not 

universal and depends on the type of the bifurcation as well as on the nonlinearity of 

the map. 

 M. D. Shrimali [13] presents the delay logistic map with two types of q-

deformations: Tsallis and Quantum-group type are studied. The stability of the 

logistic map and its bifurcation scheme is analyzed as a function of the deformation 

and delay parameters. Chaos is suppressed in a certain region of deformation and 
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delay parameter space. By introducing delay, the steady state in one type of 

deformation is maintained while chaotic behavior is recovered in another type. 

 S. C. Hunga and M. F. Tub [14] develop themes from complexity and chaos 

theory that help to explain the technological change process. They apply two 

quantifiers, correlation dimensions and Lyapunov exponents, to examine the signs and 

degrees of chaotic technological dynamics. To illustrate our ideas, we study the 

development of electronic displays from 1976 to 2010, using patent data. The results 

of the chaos model are matched against the profiles of patent citations. Their analysis 

contributes to the development of a chaotic model of technological change. 

 S. Mesbaha [15] represent a one-dimensional map is proposed for modeling 

some of the neuronal activities, including different spiking and bursting behaviors. 

The model is obtained by applying some modifications on the well-known Logistic 

map and is named the Modified and Confined Logistic (MCL) model. Map-based 

neuron models are known as phenomenological models and recently, they are widely 

applied in modeling tasks due to their computational efficacy. Most of discrete map-

based models involve two variables representing the slow-fast prototype. There are 

also some one-dimensional maps, which can replicate some of the only specific 

neuronal activities. However, the existence of four bifurcation parameters in the MCL 

model gives rise to reproduction of spiking behavior with control over the frequency 

of the spikes, and imitation of chaotic and regular bursting responses concurrently. It 

is also shown that the proposed model has the potential to reproduce more realistic 

bursting activity by adding a second variable. Moreover the MCL model is able to 

replicate considerable number of experimentally observed neuronal responses 

introduced. Some analytical and numerical analyses of the MCL model dynamics are 

presented to explain the emersion of complex dynamics from this one-dimensional 

map. 
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2.5 Conclusions 

 This chapter has presented the synthesis of the related theory particularly a 

key concept of chaos theory, nonlinearity, bifurcation, strange attractor, fractal and 

self-organization, implication to issue managements and implication to crisis 

managements in with knowledge. Literature reviews on existing chaotic maps and its 

control techniques that support the evaluation of the logistic map, Henon map and 

Gauss iterated map has also been included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 

Research Methodology 

 

3.1          Introduction 

 This chapter presents research methodology, including research process, data 

collection and research tools that will be used in this thesis. 

 

3.2 Research Process 

 3.2.1 Study the operation and function of logistic map 

 3.2.2 Design the controller of the logistic map 

 3.2.3 Simulate the properties of chaotic maps, including time domain  

waveforms, bifurcation diagram, power spectral density, cobweb plot. 

 3.3.4 Design the empirical models for an implication of managements. 

 3.3.5 Summarize the results and make comparisons of related works. 

 

3.3 Data Collection 

 The data will be collected from time domain waveform of the design chaotic 

map. The data from different value of controller will be collected and investigated. 

The behavior data of the chaotic map will be used for implification to the 

management in organization. 

 

3.4 Research Tools 

 In this thesis, research tool is MATLAB version 2013a. The microcontroller 

is Arduino board. 

 

3.5 Conclusions 

 This chapter has presented research methodology, including research 

process, data collection and research tools that will be used in this thesis. 

 

 

 



Chapter 4 

Experimental Results 

 

4.1 Introduction 

 Chaos theory in organization management, human communication, social 

interaction and team collaboration is an example of the process of engaging in a 

dynamic system of organization implementation are in Chapter 4 of this thesis, We 

present the application to. present concepts chaos theory to various aspects of 

enterprise management. Some of these programs are already used in research and 

some of them offer only the theoretical concept of chaos theory, which reflect the 

actual experience of the author. 

 

4.2  Analysis of Logistics Map 

  Chaotic system is typically a dynamic system that possesses some significant 

properties, involving the sensitive dependence on initial conditions and system 

parameters, the density of the set of all periodic points, and topological transitivity. In 

particular, a chaotic map is the lowest one-dimensional evolution function in a 

discrete-time domain that can exhibits chaotic behaviors. The simplest chaotic map 

may be a logistic map which realizes quadratic polynomials as nonlinearity, i.e. 

 

2
1 nn xax −=+                                                        (4.1) 

where a is a control parameter. The well-known variant of (4.1) that has been 

employed in a variety of applications is in the form 

)1(1 nnn xaxx −=+                                                   (4.2) 

In other words, it can be considered in (4.2) that the equation comprises two terms, 

i.e. linear and nonlinear terms as follows 

 

2
1 nnn axaxx −=+                                                    (4.3) 
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This equation normally utilizes for a classic example of nonlinear dynamic system 

behaviors. Originally, the Logistic Map is a discrete-time demographic model 

analogous to the logistic equation first created by Pierre François Verhulst. The 

variable xn is a number between zero and one that represents the ratio of existing 

population to the maximum possible population. The coefficient a is a number means 

the sum of the rate of reproduction and malnutrition. This equation models the 

distribution of human populations and estimates the increasing in populations of other 

species under limited circumstances. 

  The common feature found in both (4.1) and (4.2) is a single changeable 

parameter a that sets overall dynamic behaviors of the overall system. 

Conventionally, the adaptive control of logistic map was therefore proposed using 

additional controller, i.e. 

knnn ubxaxx +−=+
2

1                                                  (4.4) 

where a and b are two system parameters and uk is a controller. Recently, a 

generalized Logistic Map has been proposed in the form 

)1(1
βα
nnn xaxx −=+                                                     (4.5) 

where α and β are arbitrary power of the variable xn. It can be considered from (4.4) 

and (4.5) that the equations are complicated in terms of at least three parameters that 

control both linear and nonlinear terms.  

  This paper therefore presents a new technique for controlling stability of the 

logistic map through the use of fractional power in the nonlinear term. The dynamic 

behaviors can be controlled effectively. The addition arbitrary power subsequently 

increases the degree of freedom of the logistic map and provides versatile responses 

as well as the flexibility of the system. Dynamic properties will be described in terms 

of Cobweb plots, bifurcations, Lyapunov exponents, and chaotic waveforms in time 

domain. Experimental results utilize the Arduino microcontroller to generate chaotic 

waveforms with a relatively flat spectrum in frequency domain. 
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Figure 4.1 The apparently chaotic waveform in time-domain at a = 3.99 and b = 0. 

 

 

 

Figure 4.2  The cobweb plot at a = 3.99 and b = 0. 
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 I Proposed Modified Logistic Map with Arbitrary Power in Nonlinear Term 

 The proposed new technique for controlling stability of the logistic map 

through the use of fractional power in the nonlinear term is expressed as 

)1( 1
1

b
nnn xaxx −

+ −=                                                    (4.6) 

where a is a typical control parameter and b is a newly introduced parameter. Eq. 

(4.6) can be re-written as  

 
b

nnn axaxx −
+ −= 2
1                                                     (4.7) 

It can be considered from (4.7) that the linear term (axn) is kept as original logistic 

map. However, the power of nonlinear term is reduced from 2 to fractional number. 

According to (4.8) the fixed point (xp) can be found at  

b

p b
x

−









−

=
2

1

3

1
                                                     (4.8) 

 

 

Figure 4.3 The period doubling bifurcation diagram in the region of [0,4]. 
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Figure 4.4 The LE spectrum where chaos appears when LE is greater than zero. 

 

  Generally, preliminary investigations of chaotic behaviors in chaotic maps 

can be achieved qualitatively and quantitatively through a bifurcation diagram and the 

Lyapunov Exponent (LE), respectively. The bifurcation diagram indicates possible 

long-term values, involving fixed points or periodic orbits, of a system as a function 

of a bifurcation parameter. The stable solution is represented by a straight line while 

the unstable solutions are generally represented by dotted lines, showing thick 

regions. On the other hand, the LE is defined as a quantity that characterizes the rate 

of separation of infinitesimally close trajectories and is expressed as  

∑
=

+

∞→
=

N

n n

n

n dX

dX

N
LE

1

1
2log

1
lim                                                       (4.9) 
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where N is the number of iterations. Typically, the positive LE indicates chaotic 

behaviors of dynamical systems and the larger value of LE results in higher degree of 

chaoticity. In this paper,  

 

 

 

Figure 4.5 The period doubling bifurcation diagram of parameter b in the region of  

        [0,1]. 

 

 

 

Figure 4.6 The bifurcation structure of parameter a versus b. 
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4.3  Proposed Exponentially  Controller for Logistics Map 

 4.3.1 Generation of Chaotic Signals Using Microcontroller 

  The experimental results have been conducted using a cost effective Arduino 

with Atmel SAM3X8E ARM Cortex-M3 CPU as shown in Fig.4.5. The case where 

parameters a = 3.99 and b=0.1 was chosen as for demonstration. Fig. 4.8 shows the 

chaotic waveform generated from Arduino and Fig. 9.shows the Fast Fourier 

Transform (FFT) of the chaotic signal in Fig.4.8 showing a relatively flat spectrum 

over all frequency range. Other cases also exhibit the same characteristics in 

correspondence to the simulation results. 

 

 4.3.2 Randomess Tests 

  The National Institute of Standards and Technology (NIST) has provided a 

statistical tests suite in order to evaluate the randomness of binary sequences. This 

paper generates chaotic signals by the proposed two cases of the signum-based chaotic 

maps for 1,000,000 iterations and simply proceed a comparison with zero, i.e. bit “1” 

for any values that greater than zero and bit “0” for any values that smaller than zero. 

Subsequently, the NIST test suite from a special publication 800-22rev1a  was realized 

using a typical 1,000,000 random bits. The test suite attempts to extract the presence of 

a pattern that indicates non-randomness of the sequences through probability methods 

described in terms of p-value. For each test methods, the p-value indicates the strength 

of evidence against perfect randomness hypothesis, i.e. a p-value greater than a typical 

confidence level of 0.01 implies that the sequence is considered to be random with a 

confidence level of 99%. The signal is 1-bit quantized at the fixed points, Table 4.1 

summaries NIST test results, indicating that the generated sequences from both cases 

of chaotic maps pass all standard 15 tests. 
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Figure 4.7 Arduino with Atmel SAM3X8E ARM Cortex-M3 CPU 

 

 

 

Figure 4.8 Chaotic waveform generated from Arduino. 
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Figure 4.9 Fast Fourier Transfrom of the chaotic signal, showing a relatively flat      

       spectrum over all frequency range. 

 

Table 4.1 Summery of NIST test results of 1,000,000 bits. 

Test Methods p-values Results 

Mono-bit 0.34927 Success 

Frequency Block 0.40930 Success 

Runs 0.29228 Success 

Longest Run of Ones Block 0.85524 Success 

Binary Matrix Rank 0.91190 Success 

Discrete Fourier Transform 0.56938 Success 

Non-overlapping Template Matching 0.99621 Success 

Overlapping Template Matching 0.85515 Success 

Universal Statistical 0.34322 Success 

Linear Complexity 0.01986 Success 

Serial 0.97677 Success 

Approximate Entropy 0.58911 Success 

Cumulative Sums 0.55185 Success 

Random Excursions 0.34426 Success 

Random Excursions Variant 0.20476 Success 



 
 

34 

 

 

Figure 4.10 Illustration of the generated random bits 

 

  Fig.4.10 illustrated the random bits. It can be seen from Fig.4.9 that the 

digital bits that represented by 0-3.3V are random. 

 

4.4 Proposed Implication to Organization Managements 

 This topic looks at the impact of Chaos theory to organization management 

and how basic and practice of management, as well as the role of managers and 

management guidelines for engaging in the practice of organization management. A 

current view of management theory stresses the changing nature of the external 

environment and the need to understand and address these external forces for change. 

Participation and the role of systems theory and the theory of organization to 

organization management process focused. Although some may see that we did not 

manage disasters that there is an overlap between the participation of management 

theory and emergency management. Management theory emphasizes the need for 

effective planning to ensure that the goals of the organization will be. Chaos and crisis 

management focuses on effective emergency response and recovery will depend on 

good planning. Creating a sustainable community and a common goal of both 
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management and organization management. Management and disaster-related issues 

and concerns, along with strategies to improve emergency. 

 

Chaos-Based Management Model 

 

 

Figure 4.11 Chaos-Based Management Model 
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 The organization management system can be explained in to 5 stages;  

1. Setup stage 

 Use Equivalent characteristics of dynamical systems and organizations to 

frame the organization management system and Organization management Empirical 

model to set variable depended on each situation and mapping with the proposed 

exponential logistic map. And keep going to the next stage. 

2. Monitor stage  

 Own responsibility by operator team, monitor the graph that Smooth or 

Flick. At smooth that’s mean under normal circumstances but when the graph is 

flicking that mean the system start to become chaos. In dynamical systems, the 

transition to another stable state might not be definite. The system may oscillate 

around the saddle, jumping from the domain of one attractor to another. Matching 

early warning signs to category table is creating for use in this stage.   

 3.  Situation watching stage 

 When systems start to become chaos, the way to make decision making 

process and possible to estimate the level of complexity of the organization 

management strategy, from which the occurrence of chaotic events can be inferred.  

 4. Evaluated stage 

 In this stage, after system become chaos. Yje key to use to make dicition 

making is the value of priority level. The suggested scale for determining tasks 

complexity may prevent underestimation of large complex organization management 

in to 5 Priority value level. And set the priority value to make an action. 

5. Adjust stage 

 When the priority value >= Doable then the management team have to adjust 

the system to stable as soon as possible by use the b to control the chaotic. 

 Organization systems must believe that order will develop by operating 

under a clear core of values and vision kept in motion by continual organization. 

(Organization is the “strange attractor”). 

 As members of complex, non-linear communication systems must be: 

• Expect chaos. 

• Delight in unpredictability. 

• Accept yielding with uncertainty. 
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• Recognize the impossibility of identifying all initial conditions. 

• Embrace participative management. 

• Support individual autonomy. 

• Allow the system to be self-organizing. 

• Create a climate of risk-taking and empowerment. 

• Embrace new information. 

• Use self-referential techniques. 

• Build strong relationships that will hold during times of turbulence. 

• Plan for a variety of scenarios rather than specific objectives. 

 

 Chaos theory was recommended that even in the general theory of enterprise 

management systems must adapt to the complex changes and institutional learning 

institutions through a feedback system. Chaos theory states that only a small change 

in the initial conditions may have changed significantly in the long term behavior of 

the system is a classic example quoted by many to demonstrate a concept that is 

known as the Butterfly Effect 

 Change is constant although some events and circumstances in the 

organization cannot control other people. Chaos theory recognizes that change is 

inevitable and it is controlled. As organizations grow more complex and sensitive to 

the possibility for the event. And add a new level of energy to maintain complex and 

structured organization that uses more energy is needed to stabilize the system 

continues to evolve and change. Pairing organizations and dynamical system as show 

in Table 4.2. 

 

Table 4.2  Equivalent characteristics of dynamical systems and organizations  

Organizations Dynamical 

Organization  A  set  of  dynamical systems  

Complexity  Nonlinearity  

Workflow  A dynamical system  

Workflow algorithms  Time evolution equation  

Regulations  Control parameters  
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Table 4.2 Equivalent characteristics of dynamical systems and organizations (Cont.) 

Organizations Dynamical 

Initial condition  Initial condition  

Variations  in  qualities and quantities  Bifurcation  

Transacting workflows  Quasi-periodic  

Critical  Chaotic  

Crisis  Chaos  

 

 Determine the level of implications for management is in Table 4.3. 

 

Table 4.3  Some implications of chaos theory concepts in management. 

Concept Implications for management Effect level 

Attractor  Setting values and principles as an attractor that 

project activities converge to it.  

Strategic 

decisions  

Bifurcation  Changing, if needed, values and principles of 

project to absorb new opportunities.  

Strategic 

decisions  

Fractality  Similarity of understanding about goals, values 

and end result at any dimension of project (teams, 

sub-teams and individuals)  

Team 

organization  

Butterfly 

effect  

Intelligently considering impacts of changes in 

project conditions (people morale, requirements, 

results, work environments)  

Strategic 

decisions  
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Figure 4.12 Organization Management Empirical Model  

 

4.5  Investigation on Case Studies on the Chaos theory in Organization 

management 

 4.5.1 Critical organization management transitions  

 Organization management execution is a dynamic system that unfolds over 

time, and undergoes changes initiated from both internal and external causes. Such 

changes may be fluent and predictable but very often they are abrupt and seemingly 

unpredictable. However, there are early warning signs of an incoming qualitative 

change of a system, or the so called critical transition. The management team 

cognizant of the Chaos theory concepts may want to use this knowledge in order to 

detect the early signs of an incoming critical transition of organization management 

failure. 
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  4.5.1.1 Alternative stable states  

  Dynamical systems may have multiple stable states in which they may 

operate over time. Change from one state to another is called critical transition or 

bifurcation. An example of alternative stable states during team cooperation may be 

productivity vs. no productivity. 

  When team members do their job, the productivity varies – there are 

periods of high productivity following by periods of lower productivity. When new 

thoughts and inspiration are lacking, the productivity may be decreased to almost a 

complete stop, a period of time where only limited amount of constructive work is 

done. Such change corresponds to the jump to another attractor within the phase space 

(Figure 1), where the ball is representing the current state of the team. When a team is 

cooperating in the domain of productivity attractor, there are rare periods of very high 

productivity, while most of the time the team productivity is average. 

  However, as the controlling parameter changes (lowering the level of 

available knowledge, inspiration, or insight into the problem being solved) the state of 

the team may cross the saddle into the domain of no-productivity attractor. Here the 

team productivity is low – the team procrastinates (Procrastination is practice of 

postponing duties and tasks or carrying out less urgent tasks prior to more urgent 

ones), uses inefficient tools or processes, is distracted by unimportant events, lacks 

self-reflection, runs in circles, etc.  
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Figure 4.13 Critical transition of productivity 

 

 At the top of the saddle on Figure 4.13, there is a threshold. Once passed, it 

triggers a change of an attractor. When system is nearing the threshold in the region of 

the saddle, there could be early warning signs of upcoming bifurcation 

  4.5.1.2  Early warning signs of critical transitions.  

  Many complex systems have critical thresholds at which the system 

shifts abruptly from one state to another. Detecting early warning signs in real 

situations is notably more difficult than being presented in models. Often, identifying 

these signs is intuitively possible through “good/bad feeling” from situation, the 

Chaos theory suggests following early warning signs of an incoming critical 

transition. 

   4.5.1.2.1 Slower recovery from perturbations.  

   Around the bifurcation point, the system becomes very slow in 

recovering from even small perturbations. The closer the system gets to the 

bifurcation point, the slower and slower is the recovery from perturbations. 
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Figure 4.14  Slower recovery form perturbations 

 

   This slow recovery rate is illustrated on Figure 2 – in the 

domain of an attractor, the system returns to the equilibrium quickly (upper part of the 

figure). As the control parameter grows and the attractor becomes more shallow, the 

system returns to the equilibrium more and more slowly (middle part of the figure). 

Then a critical transition occurs (lower part of the figure). By studying the recovery 

rate, the distance of a system to the bifurcation point can be implied. In organization 

management,  the management team may study the ability of the team to process 

tasks. If the team is getting gradually slower at accomplishing given tasks, then a 

critical transition to unproductive state is approaching. 

   4.5.1.2.2 Increasing autocorrelation  

   A slowdown of a recovery rate also means that the rate of 

system change is also slower. In other words, when approaching the bifurcation point, 

the system state is more and more similar to its past state – this is called the increasing 

autocorrelation. Observing the autocorrelation in a team cooperation means noticing 

the rate of a team change – when a team is getting stuck in a certain problem and the 

workflow is very slow, then a critical transition to unproductive state might be 

following. 
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   4.5.1.2.3 Flickering  

   In dynamical systems, the transition to another stable state 

might not be definite. The system may oscillate around the saddle, jumping from the 

domain of one attractor to another. For instance, short periods of a headache 

interrupted by periods of pain absence might be the early warning signs of an 

incoming migraine. This phenomenon is called flickering. During the organization 

management, short periods of no productivity interrupting the normal productive 

workflow may be an early warning sign of a critical transition. 

   4.5.1.2.4 Increased spatial coherence 

   So far the identification of critical transitions was related to the 

observation of a system over time. There is also an early warning sign connected with 

the spatial configuration of a system. Studies of models and real life environments 

show that systems tend to produce spatial coherence together with resonance or 

synchronicity across scales (fractal pattern) prior to undergoing a critical transition 

into a new state. On the other hand, the system may also disintegrate its structure into 

individual uniform parts. A team gathered in one place and synchronized in their 

actions may be a sign of an incoming transition, e.g. making a breakthrough to so far 

unresolved problem. On the other hand, a team falling apart and members working 

isolated from each other may be a sign of slipping into an unproductive state. 

   Empirical studies of these early warning signs in real life 

complex systems are only beginning to emerge. As already mentioned, it is hard to 

identify them, and there are numerous false positive and negative signs, because the 

saddle point between two attractors is an unstable structure and there is no way to tell 

that an early warning sign is going to turn into a bifurcation. 

  4.5.1.3 Early warning signs of organization management strategy 

failure.  

  There is a lack of empirical studies identifying early warning signs 

(EWS) of critical transitions in organization management strategy from the Chaos 

theory perspective. However, there are several “traditional” empirical studies focused 

on identifying EWS of organization management failure. Some of these findings, 

concerning dynamics of organization management, are similar to those derived from 

theory of critical transitions. These similarities are presented by Table 4.4. 
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Table 4.4  Matching early warning signs to category 

EWS determined by empirical studies Category of EWS according to Chaos 

theory 

Slow completion of work, poor team 

performance, inadequate skills 

Slower recovery from perturbation / 

Increased autocorrelation 

Rescheduling, frequently changing 

decisions, lack of commitment 

Flickering 

Deterioration of relationships between 

participants 

Spatial coherence 

 

 Apart from this categorization related to Chaos theory, there are twelve 

dominant early warning signs of failures: 

 People- related risks       

• Lack of top management support 

• Weak management team 

• No stakeholder involvement or participation 

• Weak commitment of team 

• Team members lack requisite knowledge and skills 

• Subject matter experts are overscheduled 

 Process- related risks 

• Lack of documented requirements and/or success criteria 

• Lack of change management 

• Ineffective schedule planning 

• Communication breakdown among stakeholders 

• Resources assigned to a higher priority project 

• No business case for the project 

 

 With regard to the Chaos theory and critical transitions, the important 

process-related risk or early warning sign of the organization management failure is 

the inefficient change management.  The management team familiar with critical 
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transition concept may want to use this knowledge in order to prevent an unwanted 

bifurcation to occur, or to foster positive bifurcations. 

  4.5.1.4 Managing critical transitions  

  Critical transitions occur naturally in every dynamic system, including 

organization management. These transitions may be considered either good or bad, 

although a clear distinction is not straightforward. However, there are examples of 

critical transitions that are unwanted from the perspective of the organization 

management strategy, e.g. a transition to no productivity which increases the 

probability of organization management failure, as well as those welcomed transitions 

that bring in successes organization management strategy. 

  For managing critical transitions, there is no prescribed course of 

actions has to be taken. Each system is different and has to be insightfully studied for 

effective management of change. Natural systems are living, having their own 

dynamics and resilience. Therefore, one-time attempts to change the state of the 

systems may be inefficient. What is needed for triggering critical transitions is a 

systematical work on adjusting the resilience of a system. 

   4.5.1.4.1 Promoting positive transitions  

   Initiating a self-propagating shift from deteriorated state into a 

good state can be done by lowering the resilience of the unwanted state, which is 

unique for every studied system. It is also known from the network theory, that weak 

links lower the saddles between attractors which would help the transition to occur 

sooner. Promoting a good transition in organization management might be best 

illustrated with an example of an ineffective, procrastinating team. A sensitive 

analysis of situation based on discussion of team members may help the management 

team to determine why team is struggling to accomplishing organization management 

goal. His/her novel information, insights, or outside perspective may provide 

sufficient weak links for both lowering the resilience and the saddle between 

unproductive and productive attractors, promoting a positive critical transition. 

   4.5.1.4.2 Preventing negative transitions 

    When early warning signs begin to appear, the incoming 

critical transition may be prevented by keeping the system’s resilience high. This may 

be done by increasing the fitness of the system. This could be accomplished by having 



 
 

46 

actual, real-time information, by good distribution of knowledge, by good group 

cohesiveness, and by having optimal, both social and knowledge, network structure. 

Once it is known what factors influence the resilience of a system, maintaining high 

team resilience may be easier than trying to manage stochastic events (e.g. change of 

specification from customer, hardware fault, communication deficits, etc.). The ability 

to predict incoming critical transitions together with managing the resilience of the 

productive team might be a useful skill for the management team leading the modern 

organization management. 

 4.5.2 Managing organization management strategy at the edge of Chaos  

 In organization management strategy with increased complexity, skills and 

virtues (other than technical) become a differential factor. The manager must possess 

not only technical expertise, but also an intuition, own judgment, holistic/systemic 

thinking, the understanding of the social and emotional contexts. The quality of 

communication is both the key skill of organization management and the key process 

among organization management strategy participants that is directly correlated with 

the level of successes organization management strategy, because the quality of 

interaction influences the team self-organization process. Team interaction is by 

definition a nonlinear process, undergoing constant change – sometimes gradual, 

other times abrupt, as the system reaches the threshold of a critical transition. From 

this perspective, it is necessary to adjust the way how current tools are being used, as 

prediction of any dynamical system is possible only for a limited amount of time. 

 The experimental results of the impact of Chaos theory to organization 

management and how basic and practice of management, as well as the role of 

managers and management guidelines for engaging in the practice of organization 

management. A current view of management theory stresses the changing nature of 

the external environment and the need to understand and address these external forces 

for change. Participation and the role of systems theory and the theory of organization 

to organization management process focused. 

  4.5.2.1 Planning complex organization management strategy.  

  The traditional organization management strategy lifecycle is 

deterministic and relies on linear decision making model. Such approach to 

organization management strategy lifecycle is not realistic, as the reality of 
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organization management is inherently nonlinear. As a result, the traditional 

organization management strategy lifecycle does not allow adaptation to incoming 

changes in the organization management, leading into the organization management 

failure according to the triple-constraint-based, criteria of organization success. This 

leads to a paradox of creating a fixed plan for a complex organization being delivered 

in conditions of unpredictability and ongoing change; and measuring performance of 

organization execution based on such plan. 

   Conventional organization management remains embedded in the 

technical and instrumental notion of organization management practice, i.e. it focuses 

on the scope of organization work (planning the sequence of tasks to be accomplished 

jointly) and on the communication management (meetings, monitoring, reporting of 

organization progress). Moreover, any incoming change is being covered by risk and 

change management, putting the management team in a continuous process called 

“fire fighting” – a firmly reactive position to any change, using sophisticated tools and 

techniques for its control, leading into prolonging of organization management 

strategy scope, consequently leading to the organization management failure 

according to the organization management triangle . 

  In order to deal with the discrepancy between traditional linear 

organization management strategy planning and the nonlinear reality of organization 

management, a better approach might be to adopt iterative re-planning of the 

organization management strategy scope after reaching every milestone. Agile 

methodology is already practiced in software development, resulting in three times 

more successful organization management strategy than the traditional waterfall 

method, according to The Standish Group. 

  4.5.2.2 Defining task complexity  

  The organization management is a dynamic system, which changes 

over time and it is often hard to predict. However, this apparent “randomness” is 

resulting from some ongoing underlying dynamic patterns, i.e. a chaotic behavior. 

Chaotic behavior in organization management environment can be defined as: 

• An event which is unpredictable or disorderly 

• An event that renews and revitalizes the process 

• Small inputs leading to large consequences 
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• Similar patterns that take place across scales (fractal pattern) 

• Decisions need to be made even in absence of all intended 

information 

 

  Chaotic events are, by definition, unpredictable. Calculating the level 

of chaos present in the organization management strategy is therefore not realistic. 

However, it is possible to estimate the level of complexity of the organization 

management strategy, from which the occurrence of chaotic events can be inferred. 

The suggested scale for determining tasks complexity may prevent underestimation of 

large complex organization management strategy: 

1. Trivial (Priority Value = 1) – easy, well understood task, no 

research is expected, little effort, input is proportional to output. 

2. Simple (Priority Value = 2)  – requires preparation and possibly 

evaluation, but otherwise it is easy to deliver 

3. Doable (Priority Value = 3) – can be challenging, requires research, 

prototyping, chaotic events are present 

4. Difficult (Priority Value = 4)  – requires significant preparation, 

hidden or unexpected difficulties are to be expected 

5. Very difficult (Priority Value = 5)   – the most complex task that 

can be reasonably accomplished in an iteration, high level of 

chaotic events is present 

 

  Using this scale for determining the complexity of a task might be 

useful for planning workflow in a the organization management, as it allows 

predicting how nonlinear dynamics influence the process of task delivery, i.e. how 

long would an iteration take. Good team management is important in order to manage 

the chaos present in organization management strategy because a team can be handled 

well than organization management environment. during critical transitions. 

  4.5.2.3 Team interaction management 

  A cooperating team interaction is a great illustration of the nonlinear 

nature of the organization management process. The team is embedded into a network 

of relationships and communication, subject to process of self-organization, where 
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novel phenomena (solution, conflicts, attitudes, etc.) emerge spontaneously from the 

interaction. 

  The traditional role of the management team is to improve large scale 

processes, i.e. the sequence of actions involved in the organization management 

strategy as a whole. The Chaos theory suggests that management team should focus 

on how to improve small scale processes instead, i.e. on the quality of team 

cooperation. Here is where the professional concept becomes essential, because both 

technical and soft skills are important for efficient team management. The network 

science supports the notion that soft skills have significantly higher contribution to 

successful organization management than in the past. 

  Among other factors, a strong focus on improving the quality of team 

interaction embodies the following rules and principles 

• Reading group dynamics and using it to improve cooperation 

• Managing conflicts 

• Promoting good relationships and team cohesiveness 

• Showing respect and appreciation for others 

• Being emphatic 

• Fostering knowledge distribution 

• Leveraging cross-functional team for improved stability of team 

network by interconnectedness and weak links 

• Making the team responsible for their self-organization and auto 

correction 

• Promoting self-reflection of the team – team members being aware 

of what they are doing 

• Defining and maintaining a vision of how work should be done 

rather than setting up specific goals to be achieved 

• Successful handling of anxiety among team members resulting 

from inherent uncertainty of organization management strategy 

• Being ethical and moral 
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• Allowing a free and constructive dialog within the team in order to 

create an atmosphere allowing for novelty and emergence 

 

  The implementation of these principles may significantly improve the 

micro-scale self-organization processes and consequently the macro-scale processes 

as well based on the bottom-up logic of emergent phenomena 

  Empirical data gathered by examination of interviews with over 70 

organization management strategy participants showed that in reality, management 

team deal with organization management complexity by using standard tools and 

techniques (Work Breakdown Structure, Critical Path Method, Program Evaluation 

and Review Technique, Gantt chart, etc.) in combination with a set of alternative 

skills and competencies that are not codified in the conventional recommendations, 

manuals, or best practice. Communication skills are frequently hailed as key 

competences in organization management that underpins both successful definition of 

work content (organization management scale) and control of the work including 

stakeholder management. Despite the fact that conventional organization management 

does not reflect the importance of managing team interaction quality, empirical 

studies show that management teams in field need communication and soft skills for 

improving the process of team cooperation in order to achieve success organization 

management 

  4.5.2.4 Summary – Comparison of linear and nonlinear approach to 

Organization management 

  The Chaos theory brings into the field of an organization management 

a change in perspective – delivery of an organization is not a straight line, it consists 

of oscillations, smooth curves, and abrupt breaks. It is important to realize that 

uncertainty or unpredictability of future events is a natural part of the organization 

execution process, although some critical transitions can be predicted by detection of 

early warning signals. 

  Many organizations may be sentenced to failure from the very 

beginning because success and failure criteria were based on linear assumptions. The 

reality is that all complex organizations are nonlinear and plans need to be redefined 

after reaching every milestone in order to maintain accuracy of estimations. 
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Organization is subject to an ongoing change that does not necessarily need to be 

controlled all the time, but taken as a part of the organization. 

  The Chaos theory also redefines the role of the management team from 

a “command and control” position into a participating team member, where the main 

focus is on improving the quality of team interaction. The change in perspective on 

organization execution presented by the Chaos theory may be better illustrated by a 

comparison of traditional and nonlinear approach to organization management in 

Table 4.5. 

 

Table 4.5  Linear vs. nonlinear approach to organization management 

Traditional (linear) approach Chaos theory (nonlinear) approach 

Organizations exist in equilibrium; 

therefore change is an abnormal 

process. The goal of management is to 

increase stability through planning, 

organizing, and controlling behavior. 

Change and transformation are 

inherent qualities of organization 

execution. 

The goal of management is to increase 

learning and self-organizing in 

continuously changing contexts. 

Organizational behavior is essentially 

linear and predictable, and results are 

proportional to causes. 

Organizational behavior is inherently 

nonlinear, and results may be 

disproportional to the corresponding 

actions. 

An organization can be completely 

defined in terms of its design, 

strategy, leadership, controls, and 

culture. 

An organization is defined according 

to its underlying order and principles. 

These gave rise to a surface-level 

organizing structure, including 

design, strategy, leadership, controls, 

and culture. 

Change should be controlled by 

minimizing uncertainty and tension, 

limiting information, and centralized 

decision making. 

Change should be encouraged through 

embracing tension and increasing 

information flow. 
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Table 4.5  Linear vs. nonlinear approach to organization management (Cont.) 

Traditional (linear) approach Chaos theory (nonlinear) approach 

Organizational success is based on 

maximizing resource utilization, to 

maximize profit and increase 

shareholder wealth. 

Long-term organizational success is 

based on optimizing resource flow and 

continuous learning. 

Management team’s emphasis is on 

efficiency and effectiveness, 

improving large scale processes, 

monitoring organization and requesting 

reports. 

Management team’s emphasis is on 

improving quality of interaction in 

team, fostering knowledge creation 

and distribution, and supporting the 

team. 

Management team’s soft skills are of 

secondary importance, necessary for 

efficient transfer of information in 

organization. Technical skills have 

priority. 

Management team should be a T-Shaped 

professional, soft skills are very 

important for both stabilizing the team 

network and for organization execution. 

Technical skills are of equal 

importance. 

 

 The shift from linear to nonlinear organization management approach is 

mainly a change in perspective, not in conception. This means that it is not necessary 

to develop new tools and techniques for executing the organization using the 

nonlinear approach. Rather changing the way the tools are being used may allow for a 

complex organization execution to meet adequately set success criteria. 

 

4.6  Conclusion  

 This chapter has presented a new arbitrary power in the quadratic term in 

order to control stability of the system. The addition arbitrary power subsequently 

increases the degree of freedom of the logistic map and provides versatile responses 

as well as the flexibility of the system. Dynamic properties are described in terms of 

Cobweb plots, bifurcations, Lyapunov exponents, and chaotic waveforms in time 

domain. Experimental results utilize the Ardino microcontroller to generate chaotic 

waveforms with a relatively flat spectrum in frequency domain. The application in 
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random-bit generator that passes all NIST standard tests is also involved. The 

proposed chaotic map offers an alternative maps and random bit generator for science 

applications such as in cryptography or in communications. 

 The Chaos theory in organization management is not about revolution, it is 

about synthesis of existing approaches, about reconciliation between technical 

knowledge and soft skills, both being equally important for managing complex 

organization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

Conclusion 

 

5.1  Introduction 

 The purpose of this chapter is to summarize the thesis research and suggest 

research and policy recommendations for further analysis. The first section of the 

chapter will discuss the objectives of the research and the methodology used to 

accomplish the analysis. A summary of the major results will be described. The 

second part of the chapter will discuss policy implications of the research and propose 

recommendations for further research both on the simulation results and experimental 

results. 

 

5.2  Summary 

 The two objectives of this study were: to study a new arbitrary power in the 

quadratic term in order to control stability of the system ; and to apply a new arbitrary 

power in the quadratic term in order to control stability of the system into 

organization management 

 A typical logistic map has been utilized in a variety of applications such as in 

biological modeling and secure communications. Nonetheless, such a typical logistic 

map has only a single control parameter that sets all dynamic behaviors. This thesis 

therefore introduces a new arbitrary power in the quadratic term in order to control 

stability of the system. The addition arbitrary power subsequently increases the degree 

of freedom of the logistic map and provides versatile responses as well as the 

flexibility of the system. Dynamic properties are described in terms of Cobweb plots, 

bifurcations, Lyapunov exponents, and chaotic waveforms in time domain. 

Experimental results utilize the Arduino microcontroller to generate chaotic 

waveforms with a relatively flat spectrum in frequency domain. The application in 

random-bit generator that passes all NIST standard tests is also involved. 
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5.3  Conclusion  

 The aim of this thesis was to present Chaos theory as a general framework 

for  introducing  the  shift  from  linear  to  nonlinear  approach  to  organization 

management.  A traditionally,   organization management is based on linear thinking,  

while organization management strategy execution is inherently dynamic and  

nonlinear.  

 This leads to discrepancies between organization management theory and 

practice;  and  mainly  to  the  paradox  of  measuring  the  performance  of 

organization management strategy   execution  against  a  linearly  created  plan,  

resulting  in  high  rate  of organization management failure.  

  Theoretical  part  of  the  work  provided  general  overview  of  the  Chaos  

theory concepts.   A   synthesis of these concepts was provided by presenting the 

network theory, as all dynamic systems can be perceived as a network. Study of 

networks  explains  both  structural  and  dynamical  properties  of complex  systems,  

and  allows  for  understanding  their  attributes  and behavior.  

  Applying Chaos theory concepts in organization management is  rather  

novel approach,  with  a  limited  number  of  publications  and  empirical  research 

being conducted globally.  However, in software development, the agile Methodology 

is getting increasingly popular. Aim of this thesis was not to present aspects of 

adopting this methodology.  Instead of that, this work was focused on presenting 

nonlinear processes taking place in the organization management strategy execution;  

and  on  the  importance  of  the  management team  role.  In the chaotic organization 

environment, both technical and soft skills of the professional are needed for 

achieved.  

 In  the  analytical  part,  the  Chaos  theory  concepts  were  applied  to  

various aspects  of  team  cooperation  and  organization management  handling  in  

order  to  provide practical examples how to  nonlinear project management approach 

should be performed.  General implications of the Chaos theory for organization 

management practice were also presented, with two dominant suggestions:  a  need  

for  iterative  planning  after  every  milestone  and  the focus of  management team  

on  improving  quality  of  team  member’s interaction.   Adopting these suggestions 
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may lead into a significant Increase of organization management strategy   success, as 

well as still manage the chaos situation in to stable as soon as possible. 
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% Henon Map : Bifurcation Logistic map 

% IES LAB TNI, Bangkok, Thailand, 2015. 

 

scale = 10000; % determines the level of rounding 

maxpoints = 100; % determines maximum values to plot 

N = 5000; % number of "r" values to simulate 

a = 0; % starting value of "r" 

b = 4; % final value of "r"... anything higher diverges. 

rs = linspace(a,b,N); % vector of "r" values 

M = 1000; % number of iterations of logistics equation 

  

% Loop through the "r" values 

for j = 1:length(rs) 

    r=rs(j); % get current "r" 

    y=zeros(M,1); % allocate memory     

    y(1) = 0.00005; % initial condition (can be anything from 0 to 1) 

    y(2) = 0.1; 

    x(1) = 0.05; 

  

    for i = 2:M, % iterate         

        

       y(i+1) = r-y(i)^2;         %simplest logistic map Map r=[0 2] 

       %y(i+1) = r*(1-y(i)^2);     %simple logistic map Map r=[0 1.4] 

       %y(i+1) = r*y(i)*(1-y(i));  %logistics Map r=[0 4] 

       %y(i+1) = r*sin(y(i));      %sine map r=[0 3.1] 

       %y(i+1) = r*cos(y(i));      %cos map r=[0 2.5] 

        

    end 

    out{j} = unique(round(scale*y(end-maxpoints:end))); 

end 

  

% Rearrange cell array into a large n-by-2 vector for plotting 

data = []; 

for k = 1:length(rs) 

    n = length(out{k}); 

    data = [data;  rs(k)*ones(n,1),out{k}]; 

end 
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% Plot the data 

figure(99);clf 

h=plot(data(:,1),data(:,2)/scale,'b.'); 

%g=title('y(i+1) = cos(r*y(i)+X)'); 

set(h,'markersize',1) 

%set(g,'Visible','on'); 

 

% Henon Map : Bifurcation Structure 

% IES LAB TNI, Bangkok, Thailand, 2015. 

 

 

function Bifurcation_Structure 

    clear all 

    clc 

     

    Parameter_Range_x    = [0, 4]; 

    Parameter_Range_y    = [0, 0.4]; 

     

    Number_Of_Sampling_x = 100; 

    Number_Of_Sampling_y = 100; 

     

    Step_x  = (Parameter_Range_x(2) - Parameter_Range_x(1)) / Number_Of_Sampling_x; 

    Step_y  = (Parameter_Range_y(2) - Parameter_Range_y(1)) / Number_Of_Sampling_y; 

     

    global r q 

    for Count_x = 1: 1: Number_Of_Sampling_x + 1 

        r = (Count_x - 1) * Step_x + Parameter_Range_x(1) 

        for Count_y = 1: 1: Number_Of_Sampling_y + 1 

            q = (Count_y - 1) * Step_y + Parameter_Range_y(1); 

            [~, ~, DKY(Count_x, Count_y)] = Lyapunov_Exponents_2_Dimensional(50, 0.001, [0, 0]); 

        end 

    end 

 

    % ------------------------ Map  Algorithm : RGB -------------------- % 

    DKY_Max = real(max(max(DKY))) 

    DKY_Min = real(min(min(DKY))) 

    for Count_x = 1: 1: Number_Of_Sampling_x + 1 

        for Count_y = 1: 1: Number_Of_Sampling_y + 1 

            if DKY(Count_x, Count_y) > 0                % -    Choas   - %   

                % # Gold      -> rgb(255, 215,   0) -> #ffd700           % 

                % # Goldenrod -> rgb(218, 165,  32) -> #daa520           % 

                Map(Count_x, Count_y, 1) = (255)*(1-(real(DKY(Count_x, Count_y))/DKY_Max)); 
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                Map(Count_x, Count_y, 2) = (255)*(1-(real(DKY(Count_x, Count_y))/DKY_Max)); 

                Map(Count_x, Count_y, 3) = (255); 

            elseif DKY(Count_x, Count_y) <= 0           % - Not  Choas - % 

                Map(Count_x, Count_y, 1) = (255); 

                Map(Count_x, Count_y, 2) = (255); 

                Map(Count_x, Count_y, 3) = (255); 

            else                                        % - Can't find - % 

                Map(Count_x, Count_y, 1) = (255);              

                Map(Count_x, Count_y, 2) = (255); 

                Map(Count_x, Count_y, 3) = (255); 

            end 

        end 

 

    end 

    MapRGB(:, :, 1) = flipud(uint8(Map(:, :, 1))); 

    MapRGB(:, :, 2) = flipud(uint8(Map(:, :, 2))); 

    MapRGB(:, :, 3) = flipud(uint8(Map(:, :, 3))); 

    % ------------------------------------------------------------------ % 

    imtool(MapRGB) 

    figure(1) 

    surface((1: 1: Number_Of_Sampling_x + 1) * Step_x, (1: 1: Number_Of_Sampling_y + 1) * Step_y, 

real(DKY)) 

end 

 

% Function Map : Henon Map 

% IES LAB TNI, Bangkok, Thailand, 2015. 

 

function Output = Function_Map(Input) 

    global r q 

    Output = zeros(size(Input)); 

     

    x_old = Input(1); 

    x_now = Input(2); 

     

    y_now = + x_old; 

    x_new = - ((r.^2) * (x_now.^(1 + q))) + y_now + 1; 

     

    Output(1) = x_now; 

    Output(2) = x_new; 

end 
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% Function Map : Logistics Map 

% IES LAB TNI, Bangkok, Thailand, 2015. 

 

x0 = 0.5; % Initial condition 

N  = 1000; % Number of iterations 

r=3.8; 

% Matrices in matlab cannot have zero index 

x = zeros(N,1); 

x(1) = x0; 

 % compute the orbit and print out results 

for i=1:N 

     

 % Logistics Map 

 %x(i+1) = r*x(i)*(1-x(i)); 

 

 % sine map 

 x(i+1) = r*sin(x(i)); 

  

end 

 % graph the orbit 

plot(x); 

xlabel('t'); ylabel('Xn'); 

hold on 
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% Lyapunov Exponent & Kaplan-Yorke Dimension 

% Map Method :  

%   [1] T. S. Parker and L. O. Chua, Practical numerical algorithms for chaotic systems, Springer?Verlag, New York, 1989. 

%   [2] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D 

16 (1985), 285?317. 

IES LAB TNI, Bangkok, Thailand, 2015. 

 

function [LE1, LE2, DKY] = Lyapunov_Exponents_2_Dimensional (Number_of_Iterates, Perturbation_Size, Initial_Conditions) 

 

    n   = Number_of_Iterates; % Good at 10000 

    eps = Perturbation_Size;  % Good at 0.001 

    x   = Initial_Conditions; 

    v1  = [1 ,0]; 

    v2  = [0 ,1]; 

    sum = [0, 0]; 

     

    for k = 1: 1: n 

        v1(1) = v1(1) * eps; 

        v1(2) = v1(2) * eps; 

        v2(1) = v2(1) * eps; 

        v2(2) = v2(2) * eps; 

 

        v1(1) = v1(1) + x(1); 

        v1(2) = v1(2) + x(2); 

        v2(1) = v2(1) + x(1); 

        v2(2) = v2(2) + x(2); 

         

        v1 = Function_Map(v1); 

        v2 = Function_Map(v2); 

        x  = Function_Map( x); 

         

        v1(1) = (v1(1) - x(1)) / eps; 

        v1(2) = (v1(2) - x(2)) / eps; 

        v2(1) = (v2(1) - x(1)) / eps; 

        v2(2) = (v2(2) - x(2)) / eps; 

         

        [norm, v1, v2] = GSR(v1, v2); 

         

        sum(1) = sum(1) + log(norm(1)); 

        sum(2) = sum(2) + log(norm(2)); 

    end 

    LE1 = sum(1) / k; 

    LE2 = sum(2) / k; 

    DKY = 1 + LE1 / abs(LE2); 

end 

 

function Output = Norm_Function(Input) 

    Output = sqrt(Input(1).^2 + Input(2).^2); 
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end 

 

function Output = Dot_Product(x, y) 

    Output = x(1) * y(1) + x(2) * y(2); 

end 

 

function [norm, new_v1, new_v2] = GSR(v1, v2) 

    norm(1) = Norm_Function(v1); 

    v1(1)   = v1(1) / norm(1); 

    v1(2)   = v1(2) / norm(1); 

    Vector  = Dot_Product(v1, v2); 

    x(1)    = v2(1) - Vector * v1(1); 

    x(2)    = v2(2) - Vector * v1(2); 

    norm(2) = Norm_Function(x); 

    v2(1)   =  x(1) / norm(2); 

    v2(2)   =  x(2) / norm(2); 

     

    new_v1 = v1; 

    new_v2 = v2; 

end 

 

 

 

% Henon Map : Lyapunov Exponent & Kaplan-Yorke Dimension 

% IES LAB TNI, Bangkok, Thailand, 2015. 

 

function Run_Lyapunov_Exponents_2_Dimensional 

    clear all 

    clc 

     

    Parameter_Range    = [0, 1]; 

    Number_Of_Sampling = 1000; 

    Step  = (Parameter_Range(2) - Parameter_Range(1)) / Number_Of_Sampling; 

     

    global r q 

    q = 1; 

    for Count = 1: 1: Number_Of_Sampling + 1 

        r = (Count - 1) * Step + Parameter_Range(1) 

        Parameter(Count) = r; 

        [LE1(Count), LE2(Count), DKY(Count)] = Lyapunov_Exponents_2_Dimensional(1000, 0.001, 

[0, 0]); 

    end 
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    subplot(1, 2, 1) 

    plot(Parameter, DKY); 

    xlabel(                       'Parameter a', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

    ylabel('Henon Map : Kaplan-Yorke Dimension', 'FontSize', 16, 'FontName', 'Cordia New', 

'FontWeight', 'bold'); 

    grid on; 

     

    subplot(1, 2, 2) 

    plot(Parameter, LE1, Parameter, LE2); 

    xlabel(                       'Parameter a', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

    ylabel(    'Henon Map : Lyapunov Exponents', 'FontSize', 16, 'FontName', 'Cordia New', 

'FontWeight', 'bold'); 

    grid on; 

end 
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