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Chapter 1

Introduction

1.1 Introduction

Chapter 1 discusses the causes and origins of the research process,
comparison performance of Nonlinear Autoregressive Network with Exogenous
Inputs Techniques (NARX), Inspiration for research, Importance of the problem

research, objectives, expected result and technical terms description.

1.2 Backgrounds
The many problem in Thailand are related Time Series Data. The one of
solution is predicting event or information for planning or avoid undesirable event.
This thesis proposes the comparison performance of time series data using
NARX. The chaotic time series is nonlinear data such as weather, load energy or

communication.

1.3 Motivations

In year 2016, the worst traffic in the world is in Bangkok, Thailand. People
in Bangkok have extremely hasty lifestyle, especially in transportation. However,
Bangkok traffic problem have not been resolved for a long time. People in Bangkok
attempt to avoid traffic jam, whereas the traffic cannot be always accurately expected
even with the use of current applications to view traffic data at that time. The
application cannot accurately analyze traffic flow for user satisfaction include cannot
predict traffic flow. The research initiates idea for increasing accurately traffic flow
analytics system and predict traffic flow using NARX to improve the efficiency of
analytics in order that people can predict traffic flow and transport plans or avoid the
crowded route properly. The researcher starts from using chaotic time series instead
of traffic flow to create NARX.



1.4

Statement of Problem and Hypothesis

The traffic flow analytics in Thailand is high tolerance. This makes

commercial and personal applications unsatisfactory for some users. The researcher

initiates from prediction process in this thesis for using to predict a traffic flow in the

future.

1.5

1.6

1.7

1.8

Objectives

151 To study Chaotic Time Series

1.5.2 To study Nonlinear Autoregressive Network with Exogenous Inputs
Techniques and Prediction Analysis

153 To study Hyperbolic Tangent Sigmoid Transfer Function, Log-
Sigmoid Transfer Function and Radial Basis Transfer Function

Research Scopes
1.6.1  Prediction of Chaotic Time Series using NARX on MATLAB.
1.6.2  Comparison Hyperbolic Tangent Sigmoid Transfer Function, Log-

Sigmoid Transfer Function and Radial Basis Transfer Function

Expected Outcomes
1.7.1  Gained knowledge on Chaotic Time Series.

1.7.2  Gained knowledge on NARX and Prediction Process.

Definitions

1.8.1 NARX is a nonlinear autoregressive network with exogenous input
technique. This means the model relates the current value of a time
series to both past values of the same series and current and
eXxogenous series.

1.8.2 Chaotic Time Series are ubiquitous in nature such as the tornado,
stock market, turbulence, and weather. Their functions are different
in different situations. For example, in the case of tornado, the
chaotic behavior is harmful to human beings and need to be avoided

or controlled. But in the case of the activities in human brain, the



1.8.3

1.8.4

chaotic behaviors are useful and necessary to sustain the normal
functions of brain. Thus, it is an important task to understand chaos
and let it serve human society better.

MATLAB is a computer program for computing mathematical
operations from basic mathematics such as adding or subtracting to
advanced mathematics such as image processing or artificial
intelligence. MATLAB stands for Matrix Laboratory and is
originally written for matrix computations. Each of mathematic
operations in MATLAB is written in MATLAB a command which
is simple mathematic signs, and advanced MATLAB commands are
written in human language. Thus, MATLAB commands are easy to
understand which makes MATLAB widely used in researches.
Apart from mathematical computations, MATLAB can also be used
as the computer programming editor using high-level programming
language which is the MATLAB commands combined together as a
script for the computer program. Unfortunately, MATLAB is not
capable of generating the standalone computer program from the
MATLAB codes without specified plugin, and the MATLAB codes
are runnable only on MATLAB. Consequently, the MATLAB codes
from MATLAB have to be written in another programming
language again to create the standalone computer program.

Transfer Function is a representation in terms of spatial or temporal
frequency, of the relation between the input and output of a linear time-
invariant (LTI) system with zero initial conditions and zero-
point equilibrium. For optical imaging devices, for example, the optical
transfer  functionis the Fourier transform of the point spread
function (hence a function of spatial frequency) i.e., the intensity
distribution caused by a point object in the field of view. A number of
sources however use “transfer function” to mean some input-output
characteristic in direct physical measures rather than its transform to

the s-plane.



Chapter 2

Related Theories and Literature Reviews

2.1 Introduction

This chapter describes information of related theories including Mackey
Glass Equation, Chua’s Circuit, Lorenz Equation, Chaotic Map, NARX Model and
Levenberg-Marquardt Algorithm. The literature reviews of related research on
NARX.

2.2 Related Theory
2.1.1 Mackey Glass Equation

Mackey Glass Equation [1] is nonlinear time delay differential equation. This
Mackey Glass Equation displays a range of periodic and chaotic dynamics which
compatible with simulate fluctuate data and nonlinear data. This equation use to
simulate traffic flow data. Mackey Glass equation can be described mathematically as

dx(t) _ ax(t-7)
dt 1+x(t-7)

——bx(t) 2.1)

where a is real numbers, and (t—z) is value at x time. Depending on the values of

the parameters, this equation displays a range of periodic and chaotic dynamics.

2.1.2 Chua’s Circuit

Chua’s Circuit [2] is simplest electronic circuit exhibiting classic chaos

theory behavior. It produces oscillating waveform. The ease of construction of the

circuit has made it a ubiquitous real-world example of a chaotic system.
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Figure 2.1 One version of Chua’s Circuit

Analyzing the circuit using Kirchhoff's circuit laws, the dynamics of Chua's
circuit can be accurately modeled by means of a system of three nonlinear ordinary
differential equations in the variables x(t), y(t) and z(t), which represent the
voltages across the capacitors C; and C,, and the electric current in the inductor L, ,

respectively. These equations are

dx

S -y x= ()] (22)
d

RC, e X—y+Rz (2.3)
dz
= (24)

The function f(x) describes the electrical response of the nonlinear resistor,
and its shape depends on the particular configuration of its components. The

parameters o and £ are determined by the particular values of the circuit components.

2.1.3 Lorenz Equation
The Lorenz system [3] is a system of ordinary differential equations first
studied by Edward Lorenz. It is notable for having chaotic solutions for certain

parameter values and initial conditions. In particular, the Lorenz attractor is a set of

chaotic solutions of the Lorenz system which, when plotted, resemble a butterfly or



figure eight. The model is a system of three ordinary differential equations now

known as the Lorenz equations can be described mathematically as

x=o(y—x) (2.5)
y=x(p-2)-y (2.6)
L=xy = pr (2.7)

where o, p and [ are positive. Lorenz used the values o = 10, 5 = 8/3 and p = 28.

2.1.4 Chaotic Map

The system of the quadratic map [4] is chaotic because it has the following

characteristics. It is nonlinear. The quadratic map can be synchronized through

coupling.

2.1.5 NARX Model

Anrtificial Neural Network [5] is mathematical model apply to evaluate

information with connectionist technique. This technique emulate from human brain.
NARX [6] is a nonlinear autoregressive model with exogenous inputs for artificial
neural network learning with loopback. This technique increases the accuracy for

learning and prediction. The defining equation for the NARX model is
y(©)= f(y(t-2) y(t-2).... yt—n, fut-2)u(t-2)...ut—n,)) (2.8)

where the next value of the dependent output signal y(t) is regressed on previous
values of the output signal and previous values of an independent (exogenous) input
signal. You can implement the NARX model by using a feed forward neural network
to approximate the function f. A diagram of the resulting network is shown below,
where a two-layer feed forward network is used for the approximation. This
implementation also allows for a vector ARX model, where the input and output can

be multidimensional.



There are many applications for the NARX network. It can be used as a
predictor, to predict the next value of the input signal. It can also be used for nonlinear
filtering, in which the target output is a noise-free version of the input signal. The use
of the NARX network is shown in another important application, the modeling of
nonlinear dynamic systems.

Before showing the training of the NARX network, an important
configuration that is useful in training needs explanation. It should be considered that
the outputs of the NARX network to be an estimate of the output of some nonlinear
dynamic system that you are trying to model. The output is feedback to the input of
the feed forward neural network as part of the standard NARX architecture, as shown
in the left figure below. Because the true output is available during the training of the
network, you could create a series-parallel architecture, in which the true output is
used instead of feeding back the estimated output, as shown in the right figure below.
This has two advantages. The first is that the input to the feed forward network is
more accurate. The second is that the resulting network has a purely feed forward
architecture, and static back propagation can be used for training.

Hidden
Output

7 g@] ol

Figure 2.2 Structure of NARX Closed Loop

2.1.6 Levenberg-Marqguardt Algorithm

In mathematics and computing, the Levenberg-Marquardt algorithm [7]
(LMA or just LM), also known as the damped least-squares (DLS) method, is used to
solve non-linear least squares problems. These minimization problems arise especially

in least squares curve fitting.



The LMA is used in many software applications for solving generic curve-
fitting problems. However, as with many fitting algorithms, the LMA finds only a
local minimum, which is not necessarily the global minimum. The LMA interpolates
between the Gauss—Newton algorithm (GNA) and the method of gradient descent.
The LMA is more robust than the GNA, which means that in many cases it finds a
solution even if it starts very far off the final minimum. For well-behaved functions
and reasonable starting parameters, the LMA tends to be a bit slower than the GNA.

LMA can also be viewed as Gauss—Newton using a trust region approach.

2.1.7 Hyperbolic Tangent Sigmoid Transfer Function

The Hyperbolic Tangent [8] defined in terms of exponential function as

sinlhx e —e™ e”+1 1-e®
coshx e —e* e¥-1 1-e*

X #0 (2.9)

1.0}

Figure 2.3 Hyperbolic Tangent Sigmoid Transfer Function Graph

2.1.8 Log-Sigmoid Transfer Function

A log-sigmoid function [9], also known as a logistic function, is given by the
relationship as

Cl+e” (2.10)



where £ is a slope parameter. This is called the log-sigmoid because a sigmoid can

also be constructed using the hyperbolic tangent function instead of this relation, in

which case it would be called a tan-sigmoid. The sigmoid has the property of being

similar to the step function, but with the addition of a region of uncertainty. Sigmoid

functions in this respect are very similar to the input-output relationships of biological

neurons, although not exactly the same. Fig 2.4 is the graph of a sigmoid function.

]

-0.5 0 05

Figure 2.4 Log-Sigmoid Transfer Function Graph

Sigmoid functions are also prized because their derivatives are easy to

calculate, which is helpful for calculating the weight updates in certain training

algorithms. The derivative when £ =1 is given by

when =1, using o(B,t)= 11m , the derivative is given by
+e

da(ﬂ,t)

= flo(pafa-o(p0)]

(2.11)

(2.12)
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2.1.9 Radial Basis Transfer Function

Radial basis function (RBF) [10] networks typically have three layers. The
three layers are an input layer, a hidden layer with a non-linear RBF activation
function and a linear output layer. The input can be modeled as a vector of real

numbers. The output of the network given by
o(x)=2 ap(l x~c; Il (2.13)

where N is the number of neurons in the hidden layer, C, is the center vector for

neuron i, and a, is the weight of neuron i in the linear output neuron. Functions that

depend only on the distance from a center vector are radially symmetric about that

vector, hence the name radial basis function. In the basic form all inputs are connected

09+
JJ/
08T /
/
07 \

0.6

to each hidden neuron.

0.5

0.4

03

0.2

01

Figure 2.5 Radial Basis Transfer Function Graph



2.3 Literature Reviews
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Table 2.1 Summary of related researches to the proposed approaches

Author Year Proposed Schemes

A. Thakur et al. [11] 2016 | NARX Based Forecasting of Petrol Prices

L. Banjanovi¢-Mehmedovi¢ | 2016 | Prediction of Cooperative Platooning

etal. [12] Maneuvers Using NARX

S. Jaiswal et al. [13] 2016 | Modeling the Measurement Error of Energy
Meter Using NARX Model

L. Zhang et al. [14] 2016 | NARX models for predicting power
consumption of a horizontal axis wind
turbine

F. Chang et al. [15] 2016 | Estimating spatio-temporal dynamics of
stream total phosphate concentration by soft
computing techniques

L.K. Torres-Faurrieta et al. 2016 | Recruitment forecasting of yellow fin tuna in

[16] the eastern Pacific Ocean with artificial
neuronal networks

A.G.R. Vaz etal. [17] 2016 | An artificial neural network to assess the
impact of neighboring photovoltaic systems
in power forecasting in Utrecht, the
Netherlands

Y. Chunshan and 2015 | Study and Application of Data Mining and

L.Xiaofeng [18] NARX  Neural Networks in Load
Forecasting

H. He et al. [19] 2015 | Meridian ECG Information Transmission
System Modeling Using NARX Neural
Network

X. Zhe et al. [20] 2015 | Water Distribution Network Modeling Based

on NARX




12

A. Thakur et al. [11] presents the expectations of gasoline prices with
dynamic neural imaging theory, with automated regression techniques. Accuracy in
gasoline pricing is important in maintaining balance for consumer demand and oil
producers.

L. Banjanovi¢-Mehmedovi¢ et al. [12] offers an intelligent transport system
that improves traffic agility. In this research, additional systems were developed to
improve the predictive accuracy of the system by nonlinear autonomic neural network
techniques with external input data.

S. Jaiswal et al. [13] presented a nonlinear regression model of the
metrological error measurement with nonlinear automatic neural network techniques
with four external inputs.

L. Zhang et al. [14] presents a linear energy prediction of horizontal axis
wind turbine using nonlinear automata regression model with external input data. By
dividing the model into two, the first uses two data inputs. The second uses three
external input data. The result is the second model has the first high precision results.

F. Chang et al. [15] proposed an evaluation of the phosphate mineralization
in streams by artificial intelligence techniques. The artificial intelligence technique
used in this research is the nonlinear automatic regression neural network technique
with external input data. Data used for river data in Taiwan with 10 years of water
quality data collection. The results are based on nonlinear automatic linear regression
techniques with external input data that accurately and efficiently detect the data.

L.K. Torres-Faurrieta et al. [16] proposed a prediction of yellowfin tuna in
the eastern Pacific using nonlinear autoregressive neural network techniques with
external input data. By dividing the models into two, the results show that the type of
input fed to the neural network influences the prediction of fish and accuracy.

A.G.R. Vaz et al. [17] proposed the use of Neural Networks' neural network
assessment system and its vicinity to anticipating the use of electricity and produce
sufficiently for precise use. The result is a mean square error of 9 percent to 25

percent and a prediction of more than 15 minutes.
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Y. Chunshan and L. Xiaofeng [18] present data mining relationships for
predicting electricity demand. The use of data mining in the analysis of China's
electricity use factors indicates that there are some key indicators and that the
automatic neural network registers are not linear with external inputs. The results
show a more accurate prediction model.

H. He et al. [19] presented an analysis of data on cardiopulmonary resections
from 10 linear regression lines using nonlinear autonomic neural network technique
with better external input data than network technique. Automatic linear is retracting
artificial neural network with external input data. Signs of cardiac catheterization
from the meridians are accurate to 0.98.

X. Zhe et al. [20] proposed the use of nonlinear automatic linear neural
network techniques with external input data for predicting and controlling water
distribution. Input data used is current and past data. The results from deploying to the

real network are satisfying, easy to track and predict.

2.4 Conclusion

This chapter discusses the relevant theoretical information presented in this
thesis consist of prediction and forecasting using NARX and training NARX. The
literature reviews of 10 literatures related to the proposed NARX approaches were

also included.



Chapter 3
Research Methodology

3.1 Introduction

This chapter describes research methodology of this thesis, involving

research process, data collection, and research tools.

3.2 Research Process
3.2.1  Study the chaotic time series
3.2.2  Study the NARX
3.2.3  Simulate the time series data from equation
3.2.4  Collect the traffic volume
3.25  Training and prediction using NARX

%y Data Collection
The data in this thesis are simulating from chaotic time series equation and

collect real traffic volume data from Department of Highways (DOH).

3.4 Research Tools

341

MATLAB R2011a

3.5 Conclusion

This chapter has presented research methodology of this thesis, including

research process data collection, and research tools.



Chapter 4

Experiment Results

4.1 Introduction

This chapter proposes the prediction of simulate data set using NARX. The
simulate data set generate by Mackey Glass Equation, Realistic Chua’s Circuit,
Lorenz Equation and Chaotic Map. MSE Result from each data set were analyzed and
predicted with NARX on MATLAB.

4.2 Simulate Data Set
4.2.1 Mackey Glass Equation

Mackey Glass Equation using 4"-Order Runge-Kutta method. This method

decide step size is 1, 7 is 17, simulate data set is 1000 and initial condition is 1.2.

A Mackey-Glass time serie (tau=17)
1 -6 T T T T

14+ .
1.2F n

x(t)

08 T

06 u 1

04 .

0.2

200 400 600 800 1000

Figure 4.1 Simulated time series of Mackey Glass Equation

4.2.2 Chua’s Circuit

Realistic Chua’s Circuit is configured resistors are R1=220 Q, R,=220 Q,
R3=2200 Q, R,=22000 Q, Rs=22000 Q, Rs=3300 Q, R;=100 Q, Rg=1000 Q, Rg=1000
Q, R1p=1800 Q, R=1800 2, C=100nF, C;=10nF and C,=100nF




.||—

Figure 4.2 Schematics of the simulated circuit

Simulated chaotic attractor of Chua Circuit

Figure 4.3 Simulated chaotic attractor of Chua Circuit

4.2.3 Lorenz Equation

Lorenz Equation using the values o =10, S :g and p=28.

Simulated chaotic attractor of Lorenz Equation

Figure 4.4 Simulated chaotic attractor of Lorenz Equation

16
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4.2.4 Chaotic Map
Chaotic Map is generated with default value in MATLAB.

Quadratic Map(Choatic Map)

Amplitude

4 L L | | 1 L
o 100 200 300 400 500 600 700 800 900 1000
Time series

Figure 4.5 Simulated time series of Chaotic Map

Training NARX Model
Training NARX Model involve configure weight, number of hidden neurons,

input and delays. The accuracy base on a configure value. This paper use simulate

data sets input NARX by Network Time Series Tool in MATLAB. These simulate

data sets split 3 set. Training set is 70%, validation set is 15% and testing set is 15%.

Figure 4.6 Structure of NARX Closed Loop Model
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X(t] Hidden

Figure 4.7 Structure of NARX to Predict One Step Ahead Model

4.4 Prediction Result
4.4.1 Hyperbolic Tangent Sigmoid Transfer Function

The results are divided into 5 groups by simulate data set. The summary of
MSE results from processing through the NARX model with different number of
delays and number of hidden neurons. The summary result shown in Table 4.1, 4.2,
4.3,4.4,45and Fig.4.8, 4.9,4.10, 4.11, 4.12, 4.13
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Table 4.1 Prediction Result of simulated data from Mackey Glass Equation using

Simulated
Data Set

Transfer

Function

Experiment Results

Number of

Delays

Number of Hidden

Neurons

MSE

Mackey
Glass

Equation

Hyperbolic
Tangent
Sigmoid
Transfer

Function

1

3.71x10°°

3.74x10°

3.98x107°

3.14x107°

2.47x107°

2.26x107°

3.04x107°

2.65x10°°

©| 00 N o o & W N

2.81x107°

[EEN
o

2.48x107°

7.81x10°°

6.93x10°°

6.82x10°

1.12x10°°

4.06x107°

5.28x10°°

4.69x107°

5.37x10°°

©O©| 00 N o o &~ WO N B

4.81x107°

[EEN
o

5.04x107"
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Table 4.2 Prediction Result of simulated data from Chua’s Circuit using Hyperbolic

Tangent Sigmoid Function

Simulated
Data Set

Transfer

Function

Experiment Results

Number of

Delays

Number of Hidden

Neurons

MSE

Chua’s
Circuit

Hyperbolic
Tangent
Sigmoid
Transfer

Function

1

0.07

1.43x107

1.41x107*

1.27 x10™*

1.14x10™

1.17x10™*

1.02x10™*

1.05x107*

2
3
4
5)
6
7
8
9

9.82x107°

=
o

7.67x107°

0.07

1.13x10™*

1.11x10™

1.01x10™*

1.14x107

9.12x10°°

1.08x10™*

8.21x10°

©O©| O N o o B~ W N P

9.69x107°

=
o

8.15x10°°




Table 4.3 Prediction Result of simulated data from Lorenz Equation using Hyperbolic

Tangent Sigmoid Function

Simulated
Data Set

Transfer

Function

Experiment Results

Number of

Delays

Number of Hidden

Neurons

MSE

Lorenz

Equation

Hyperbolic
Tangent
Sigmoid
Transfer

Function

1

24.68

2.75

2.10x10™*

1.88x107*

1.62x107

1.60x10™*

1.55x107*

1.59x107*

2
g
4
5
6
7
8
9

1.46x10™*

[EEN
o

1.46x10™

24.57

2.75

1.92x10™

1.79x107™*

1.72x10™

1.54x107*

1.59x10™

1.57x10™

©O©| 00| N o O B W N B

1.54x107*

[EEN
o

1.42x10™
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Table 4.4 Prediction Result of simulated data from Chaotic Map using Hyperbolic

Tangent Sigmoid Function

Simulated
Data Set

Transfer

Function

Experiment Results

Number of

Delays

Number of

Hidden Neurons

MSE

Chaotic
Map

Hyperbolic
Tangent
Sigmoid
Transfer

Function

0.08

3.47x1077

2.09x10”"

9.31x107®

2.69x107°

2.63x10°"

3.19x10°®

8.91x107°

©O©| 00 N o O & W N -

1.21x107°

[HEY
o

1.95x107%

0.12

0.05

3.45x1077

9.35x107°

3.31x107

1.54 %10~

1.44x107"

1.70x10~7

©O©| o N o o &l W DN B

4.81x10°°

-
(@)

5.33x107°
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Table 4.5 Prediction Result of real data from Collection using Hyperbolic Tangent

Sigmoid Function

Data Set

Transfer

Function

Experiment Results

Number of

Delays

Number of

Hidden Neurons

MSE

Department of

Highways

Hyperbolic
Tangent
Sigmoid
Transfer

Function

1.79x10*

1.79x10*

2.05x10*

2.35x10*

1.87 x10*

2.00x10*

1.88x10*

2.00x10*

©O©| 00 N o o B W N -

2.61x10"

(BN
o

1.62x10*

1.86x10*

1.75x10*

1.40x10*

1.95%x10°

2.10x10*

1.81x10*

1.91x10*

2.62x10*

©O©| 00| N o O &~ W N B~

1.82x10*

-
o

4.35x10°
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The Comparison between output value and predict value

Output Value
14} —Predict Value

12} ﬂ
1+

08
06

04

0.20

L 1 L 1
200 400 600 800 1000

Figure 4.8 The Comparison between output values and predicted values from Mackey
Glass Equation using Hyperbolic Tangent Sigmoid Transfer Function

The Comparison between output value and predict value

Figure 4.9 The Comparison between output values and predicted values from Chua’s

Circuit using Hyperbolic Tangent Sigmoid Transfer Function

The Comparison between output value and predict value

Qutput Value
Predict Value

50
40
30
20
10

0
30

Figure 4.10 The Comparison between output values and predicted values from
Lorenz Equation using Hyperbolic Tangent Sigmoid Transfer Function
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The Comparison between output value and predict value
06 T T T

QOutput Value
Predict Value

i [ \‘\
I
|

L 1 L
0 200 400 600 800 1000

Figure 4.11 The Comparison between output values and predicted values from

Chaotic Map using Hyperbolic Tangent Sigmoid Transfer Function

5 Number of Delays 2
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- Mackey Glass Equation
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10° Lorenz Equation
— — ~Chaotic Map
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Figure 4.12 Result Experiment by Number of Delays 2 using Hyperbolic Tangent
Sigmoid Transfer Function

o Number of Delays 4
10 T T T T r T r
i Mackey Glass Equation
0 e —=~Chua's Circuit
10 - Lorenz Equation
e L — —*Chaotic Map
a2 N X, 5
10° -\ A
\\ \
4 AL . 00 ww . 0
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10" | L 3 d
10° L iy
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Number of Hidden Neurons

Figure 4.13 Result Experiment by Number of Delays 4 using Hyperbolic Tangent
Sigmoid Transfer Function
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4.4.2 Log-Sigmoid Transfer Function
The summary result shown in Table 4.6, 4.7, 4.8, 4.9, 4.10 and Fig.4.14,
4.15,4.16,4.17,4.18,4.19

Table 4.6 Prediction Result of simulated data from Mackey Glass using Log-Sigmoid

Transfer Function

_ Experiment Results
Simulated Transfer

) Number of | Number of Hidden
Data Set Function MSE
Delays Neurons

1 3.73x10°

3.69x10°

3.58x10°°

2.53x10°

2.38x10°°

2.40x10°°

2.88x107°

2.66x10°

©O©| 00 N| o o & W N

245x10°°

Mackey Log-Sigmoid

[EEN
o

2.99x10°
Glass Transfer

. . 8.03x10°°
Equation Function )

6.56x10°°

3.16x10°

3.68x10°°

4.09x10°°

3.61x10°°

454%x10°°

3.95x10°°

©O©| | N o o B WO N -

3.67x10°

[N
o

1.90x10°®
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Table 4.7 Prediction Result of simulated data from Chua’s Circuit using Log-Sigmoid

Simulated
Data Set

Transfer

Function

Experiment Results

Number of

Delays

Number of Hidden

Neurons

MSE

Chua’s
Circuit

Log-Sigmoid
Transfer

Function

1

0.07

1.43x107™

1.23x107*

1.24%x107*

0.78x107°

8.70x10°°

1.04x107*

1.03x10°*

©| 00 N o O &~ W DN

9.93x107°

[EEN
o

1.00x107*

0.07

1.13x10™*

1.04x107*

1.10x107*

1.09x107*

1.10x107*

8.44x10°°

9.70x107°

©O©| 0 N o O &~ WO N B

7.31x107°

=
o

8.53x107°
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Table 4.8 Prediction Result of simulated data from Lorenz Equation using Log-

Sigmoid Transfer Function

_ Experiment Results
Simulated Transfer

) Number of | Number of Hidden
Data Set Function MSE
Delays Neurons

1 24.63

2.75

2.06x10™

1.81x107*

1.60x107*

1.53x107*

1.57x107*

2

3

4

5 1.67x10™*
6

7

8

9

1.50x107™*

Log-Sigmoid

[EEN
o

Lorenz 1.50x107*

Transfer

Equation 2457

Function

2.75

2.75

1.82x107*

1.53x10™*

1.59x107*

1.46x107*

1.56x107*

©O©| 00| N| o O & W N B

1.55%x107*

[EEN
o

1.38x107*
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Table 4.9 Prediction Result of simulated data from Chaotic Map using Log-Sigmoid

Transfer Function

Simulated
Data Set

Transfer

Function

Experiment Results

Number of

Delays

Number of Hidden

Neurons

MSE

Chaotic Map

Log-Sigmoid
Transfer

Function

1

0.08

7.52x1077

1.50x107°

2.58x107°

2.38x1077

1.27x10°°

8.44x107*°

7.37x10°®

©| 00 N o O &~ W DN

4.37 %107

[EEN
o

2.50%x107®

0.08

0.11

3.10x107®

2.30x10°

4.86x10°°

4.05x1077

6.37x107

2.26x10°°

©O©| 0 N o O B WO DN P

2.79x107°

[EEN
o

4.80x10°7
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Table 4.10 Prediction Result of real data from Collection using Log-Sigmoid Transfer

Function

Experiment Results
Transfer

Data Set ) Number of | Number of Hidden
Function MSE
Delays Neurons

1 1.80x10*

5.51x10*

1.85x10*

2.88x10*

1.82 x10*

8.99x10*

2.06x10*

2.73x10*

©| 00 N o o & W N

3.04x10*

Log-Sigmoid

[EEN
o

Department 6.75x10*

Transfer

of Highways 1.71x10*

Function

1.34x10*

2.22 x10*

1.74x10*

1.79x10*

6.65x10*

5.10x10*

3.25x10°

©O©| 00 N o o &~ WO N B

2.81x10*

[EEN
o

3.52x10°
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The Comparison between output value and predict value

Output Value
Predict Value

L L L L
200 400 600 800 1000

Figure 4.14 The Comparison between output values and predicted values from

Mackey Glass Equation using Log-Sigmoid Transfer Function

The Comparison between output value and predict value

£ g Output Value
10, ; . Predict Value

g o : :

Figure 4.15 The Comparison between output values and predicted values from

Chua’s Circuit using Log-Sigmoid Transfer Function

The Comparison between output value and predict value

Qutput Value
Predict Value

50
40
30
20-..
10 .-

20

Figure 4.16 The Comparison between output values and predicted values from

Lorenz Equation using Log-Sigmoid Transfer Function
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The Comparison between output value and predict value
06 T T T

—— Output Value
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Figure 4.17 The Comparison between output values and predicted values from
Chaotic Map using Log-Sigmoid Transfer Function
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Figure 4.18 Result Experiment by Number of Delays 2 using Log-Sigmoid Transfer
Function
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Figure 4.19 Result Experiment by Number of Delays 4 using Log-Sigmoid Transfer
Function
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4.4.3 Radial Basis Transfer Function
The summary result shown in Table 4.11, 4.12, 4.13, 4.14, 4.15 and Fig.4.20,
4.21,4.22,4.23,4.24,4.25

Table 4.11 Prediction Result of simulated data from Mackey Glass Equation using

Radial Basis Transfer Function

_ Experiment Results
Simulated Transfer

) Number of | Number of Hidden
Data Set Function MSE
Delays Neurons

1 3.73x10°

3.68x10°

2.62x107°

2.54x107°

2.41x107°

4.00x10°°

2.46x107°

2.48x10°

©O©| 00 N| o o & W N

2.44x107°

Mackey Radial Basis

[EEN
o

2.28x10°°
Glass Transfer

. . 7.90x10°°
Equation Function §

7.68x107°

3.90x10°

3.61x10°°

3.80x10°

4.92x10°°

9.99x1077

4.96x10°°

©O©| | N o o B WO N -

9.95x10°°

[N
o

1.05x10°°
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Table 4.12 Prediction Result of simulated data from Chua’s Circuit using Radial

Basis Transfer Function

Simulated
Data Set

Transfer

Function

Experiment Results

Number of

Delays

Number of Hidden

Neurons

MSE

Chua’s
Circuit

Radial Basis
Transfer

Function

1

0.07

1.43x107™

1.49%107*

1.42x107*

9.13x10°°

1.23x107*

1.07x10™*

1.06x10™*

©| 00 N o O &~ W DN

1.07x107*

[EEN
o

8.26x107°

0.35

1.13x10™*

1.06x107*

9.50x10°°

8.64x107°

1.07x107*

8.96x10°

1.02x107*

©O©| 0 N o O &~ WO N B

9.30x10°°

=
o

8.58x107°
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Table 4.13 Prediction Result of simulated data from Lorenz Equation using Radial

Basis Transfer Function

_ Experiment Results
Simulated Transfer

) Number of | Number of Hidden
Data Set Function MSE
Delays Neurons

1 24.64

7.39

2.08x10°*

2.24x107*

1.76x107*

1.59x107*

1.64x107*

2
3
4
5 1.99x10™*
6
7
8
9

1.69x107*
Radial Basis

[EEN
o

Lorenz 1.59x107*

Transfer

Equation 24.58

Function

2.75

1.92x10™*

1.79x107*

1.64x107*

1.49x107*

1.59x107*

1.55%x10°*

©O©| 00 N o O B W N B

1.45%x107*

[EN
o

1.36x10™*
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Table 4.14 Prediction Result of simulated data from Chaotic Map using Radial Basis

Transfer Function

Simulated
Data Set

Transfer

Function

Experiment Results

Number of

Delays

Number of Hidden

Neurons

MSE

Chaotic Map

Radial Basis
Transfer

Function

1

1.65x107°

6.88x1077

3.86x10°*

8.62x107°

454x10°°

6.05x107°

2.91x107~7

2.64x107

©| 00 N o o & W N

3.18x10”"

[EEN
o

1.81x107”7

1.64x10°®

0.07

0.04

0.01

1.74x107°

1.75x1077

0.05

1.48x107°

©O©| 00| N o O] &~ W N B

6.95x107°

[EN
o

1.54x10°"
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Table 4.15 Prediction Result of real data from Collection using Radial Basis Transfer

Function

Experiment Results
Transfer

Data Set ) Number of | Number of Hidden
Function MSE
Delays Neurons

1 3.26 x10°

2.23x10*

1.73x10*

4.56 x10*

6.01x10*

2.69x10*

6.72x10*

1.83x10*

©| 00 N o o & W N

4.51x10*

Radial Basis

[EEN
o

Department 3.95x10*

Transfer

of Highways 3.27 x10°

Function

1.79x10*

1.85x10*

3.57 x10*

4.05x10*

1.33x10*

2.43x10°

4.00x10*

©O©| 00 N o o &~ WO N B

3.23x10*

[EEN
o

4.04x10*




The Comparison between output value and predict value
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Figure 4.20 The Comparison between output values and predicted values from

Mackey Glass Equation using Radial Basis Transfer Function

The Comparison between output value and predict value

Figure 4.21 The Comparison between output values and predicted values from

Chua’s Circuit using Radial Basis Transfer Function

The Comparison between output value and predict value

Output Value
Predict Value

Figure 4.22 The Comparison between output values and predicted values from

Lorenz Equation using Radial Basis Transfer Function
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The Comparison between output value and predict value
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Figure 4.23 The Comparison between output values and predicted values from
Chaotic Map using Radial Basis Transfer Function
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Figure 4.24 Result Experiment by Number of Delays 2 using Radial Basis Transfer

Function
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Figure 4.25 Result Experiment by Number of Delays 4 using Radial Basis Transfer
Function
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4.5 Conclusion

The simulate data sets are nonlinear data using to training neural network and
compare to find optimal value for configuration NARX. The NARX technique is used
to analyze and predict chaotic time series. It was found delays, hidden neurons, data
volume and transfer function influenced the predictive accuracy of data. In the future,
NARX Model can develop to improve accuracy for applies to communication system

based on mobile application or web application.



Chapter 5

Conclusion

51 Introduction

This chapter summarizes the thesis research and suggestion for further
researches and implementation. The first part of this chapter summarizes the objectives
and proposed approaches in this thesis. The second part of this chapter discusses the

results from the proposed implementations.

5.2 Summary

The objectives of this thesis as described in the first chapter were, to study
Chaotic Time Series. This thesis has satisfied all objectives described in the first chapter.
The Chaotic Time Series were generated on MATLAB, prediction using NARX with

configuration and comparison performance in this thesis.

5.3 Suggestion
In the future, NARX Model Develop to improve accuracy for applying to

communication system based on mobile application or web application.

54 Conclusion
The NARX technique is used to analyze and predict chaotic time series. It was
found delays, hidden neurons, data volume and transfer function influenced the predictive

accuracy of data.
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Abstract

This paper proposes the traffic flow analytics and prediction
using nonlinear autoregressive network with exogenous inputs
technique (NARX). The learning of neural network is divided into 2
configuration parts. The configuration delays are 2 and 4 to compare
the results and find optimal configuration value for create NARX
model using the simulate data. The chaotic simulate data set are
generate by Mackey glass equation. Then analyze data set using
NARX model. This able to developed to application or web application
used in Bangkok.

Keywords: Analytics, Prediction, Traffic Flow, Mackey Glass
Equation, NARX
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The Prediction of Chaotic Time Series using
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Abstract—This paper propose the prediction of time series using
nonlinear autoregressive network with exogenous input
technique (NARX). The learning of neural network is divided
into 2 configuration parts. The configuration delays are 2 and 4
to compare the results and find the optimal configuration value
for create NARX model using the simulate data. The chaotic
simulate data set are generate by Chaotic Equation. Then analyze
data set using NARX model. This able to developed to application
or web application used in Bangkok.

Keywords; Analytics; Prediction; Choatic Time Series; NARX;

I INTRODUCTION

The predictive information is based on time series data. The
chaotic time series is nonlinear data such as weather, load
energy or communication. Recent researches the prediction
were used to resolve the problem for communication, petrol
price, energy [1, 2, 3]. There are various methods to predict
information, including NARX for predicting time series data.

In year 2016, the worst traffic in the world is in Bangkok,
Thailand [4]. People in Bangkok have extremely hasty
lifestyle, especially in transportation. However, Bangkok traffic
problem have not been resolved for a long time. People in
Bangkok attempt to avoid traffic jam, whereas the traffic
cannot be always accurately expected even with the use of
current applications to view traffic data at that time. The
application cannot accurately analyze traffic flow for user
satisfaction include cannot predict traffic flow. The research
initiates idea for increasing accurately traffic flow analytics
system and predict traffic flow using NARX to improve the
efficiency of analytics in order that people can predict traffic
flow and transport plans or avoid the crowded route properly.
The researcher starts from using chaotic time series instead of
traffic flow to create NARX.

This paper compares the result of prediction with different
time series data and different learning configuration of neural
network to find the optimal value to create NARX model. The
time series data simulate from chaotic equation. This result can
develop to application or web application in future.

Wimol San-Um
Centre of Excellence in Intelligent Integration System,
Thai-Nichi Institute of Technology
1771/1, Pattanakarn Rd., Suan Luang, Bangkok, 10250,
THAILAND

II.  RELATED THEORIES AND LITERATURE REVIEWS

A. Mackey Glass Equation

Mackey Glass Equation is nonlinear time delay differential
equation. This Mackey Glass equation displays a range of
periodic and chaotic dynamics which compatible with simulate
fluctuate data and nonlinear data. This equation use to simulate
traffic flow data. Mackey Glass equation can be described
mathematically as

) alt-r) 0

i Leai—r)"

where @ is real numbers, and (t—r) is value at x time.

Depending on the values of the parameters, this equation
displays a range of periodic and chaotic dynamics.

()

B. Chua'’s Circuit

Chua’s Circuit is the simplest electronic circuit exhibiting
chaos and stability. It produces oscillating waveform. The ease
of construction of the circuit has made it a ubiquitous real-
world example of a chaotic system.

e al
[

>
g}

Figure 1. One version of Chua’s Circuit

C. Lorenz Equation

Lorenz Equation is a system of three ordinary differential
equations. The Lorenz Equation are given by

i=o(y=x)y=rx=y—xz,z=xy—bz @
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where X,y and z make up the system state at time. 0, p

and f are the system parameters.

D. Quadratic Map(Choatic Map)

The system of the quadratic map is chaotic because it has
the following characteristics. It is nonlinear. The quadratic map
can be synchronized through coupling.

E. NARX Model

Artificial Neural Network is mathematical model apply to
evaluate information with connectionist technique. This
technique emulate from human brain. NARX is a nonlinear
autoregressive model with exogenous inputs for artificial
neural network learning with loopback. This technique
increases the accuracy for learning and prediction.

Figure 2. Structure of NARX Closed Loop

F. Literature Reviews

NARX is useful technique for predict information. NARX
applied to communication, energy, environment, economic and
etc. Lejla Banjanovié¢-Mehmedo¢’s research [1] present an
approach towards NARX improve Intelligent Transport
systems. Anita Thakur’s research [2] present an approach
towards NARX for petrol price forecasting. Lidong Zhang’s
research [3] present an approach towards NARX for predict
power consumption of a horizontal axis wind turbine. A.G.R
Vaz’s research [5] present an approach towards NARX predict
power forecasting in Utrecht, the Netherland. Yang Chunshan
and Li Xiaofeng’s research [6] present an approach towards
Data Mining with NARX for load forecasting. The above
research mentioned NARX was used in many field by different
factor. Implementing NARX to system, the result depend on
variable type and configure NARX input.

III.  REASEARCH METHODOLOGY

A. Simulate Data Set

e Mackey Glass Equation using 4”-Order Runge-Kutta
method. This method decide step size is 1, 7 is 17,
simulate data set is 1000 and initial condition is 1.2.

A Mackey-Glass time serie tau=17)
16

14}
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Figure 3. Simulate Data Set by Mackey Glass Equation

e Realistic Chua’s Circuit is configured resistors are
R1=220 Ohms, R2=220 Ohms, R3=2200 Ohms,
R4=22000 Ohms, R5=22000 Ohms, R6=3300 Ohms,
R7=100 Ohms, R8=1000 Ohms, R9=1000 Ohms,
R10=1800 Ohms, R=1800 Ohms, C=100nF, C1=10nF
and C2=100nF

I

||}—

Figure 4. Schematic of simulated circuit

¢ Lorenz Equation using the values

8
a=10,ﬂ=§,p:28 3)
e Quadratic Map(Chaotic Map) is generated with default

value in MATLAB

Figure 5. Simulate Data Set by Quadratic Map

B. Training NARX Model

Training NARX Model involve configure weight, number
of hidden neurons, input and delays. The accuracy base on a
configure value. This paper use simulate data sets input NARX
by Network Time Series Tool in MATLAB. These simulate
data sets split 3 set. Training set 70 percent. Validation set 15
percent. Testing set 15 percent. Fig.6 shows a structure NARX
model.
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X Hidden

Figure 6. Structure NARX Predict 1 Step Ahead Model

Mean Square Error (MSE) evaluates the accuracy of
NARX. Mean Square Error can be described mathematically as

1 M-y
MSE = _Z" IDIT0

. 4
n el ) B

C. Pseudocode

NARX using all simulate data set to define input and target
in Fig. 7

Define input

Define target

Define input delays

Define feedback delays

Define hidden layer

Create Neural Network

Prepare data for Network

Configure training ratio

Configure validation ratio

Configure testing ratio

Training Neural Network

Testing Neural Network

Create Close Loop by Neural Network
Prepare data for NARX

Training NARX

Remove Time Delays from NARX
Prepare data for Predict 1 Step Ahead
Predict 1 Step Ahead

Figure 7. Pseudocode for NARX

RIS RS R R LA (RO SN (SO IR (RN LR R (N O O A O

IV. EXPERIMENT RESULTS

The results are divided into 4 groups by simulate data set.
The summary of MSE results from processing through the
NARX model with different number of delays and number of
hidden neurons.

Number of Delays 2
1020 —:—-Mackey Glass Equation

\\ Chua's Circuit
\ ===Lorenz Equation
\ = 2

bk Choatic Map

4 M\ Necmmmea v DM
u 10 N WL we R

Number of Hidden Neurons

Figure 8. Result Experiment by Number of Delays 2

o Number of Delays 4
—:—-Mackey Glass Equation
+=Chua’s Circuit
10° \ ~Lorenz Equation
\\ — Choatic Map
o, ¥
w e Ny i
210 K8 i
T SO -, ]
10°
10" 1 1 It 1 1 1

Number of Hidden Neurons
Figure 9. Result Experiment by Number of Delays 4

V. CONCLUSION

NARX technique is used to analyze and predict chaotic
time series. It was found delays and hidden neurons influenced
the predictive accuracy of data.

In the future, NARX Model Develop to improve accuracy
for appliess to communication system based on mobile
application or web application.
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1. NARX.m

% Solve an Autoregression Problem with External
% Input with a NARX Neural Network

% Script generated by NTSTOOL

% This script assumes the variables on the right of

% these equalities are defined:

inputSeries = mackeyGlassinput;

targetSeries = mackeyGlassOutput;

% inputSeries = tonndata(realChualnput,false,false);

% targetSeries = tonndata(real ChuaOutput,false,false);

% inputSeries = tonndata(lorenzinput,false,false);
% targetSeries = tonndata(lorenzOutput,false,false);

% inputSeries = chaoticMaplnput;

% targetSeries = chaoticMapOutput;

% inputSeries = TRAFFIC_CELL;
% targetSeries = TRAFFIC _CELL;

% Create a Nonlinear Autoregressive Network with External Input
delay = 1:2;

hiddenLayerSize = 10;

inputDelays = delay;

feedbackDelays = delay;

net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize);

% Prepare the Data for Training and Simulation
% The function PREPARETS prepares time series data
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% for a particular network, shifting time by the minimum

% amount to fill input states and layer states.

% Using PREPARETS allows you to keep your original

% time series data unchanged, while easily customizing it

% for networks with differing numbers of delays, with

% open loop or closed loop feedback modes.

[inputs,inputStates, layerStates,targets] = ...
preparets(net,inputSeries,{} targetSeries);

% net.layers{1}.transferFcn = ‘'logsig’;

% net.layers{1} .transferFcn = ‘radbas’;

% Set up Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Train the Network

[net,tr] = train(net,inputs,targets,inputStates, layerStates);

% Test the Network

outputs = net(inputs,inputStates,layerStates);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs);

% View the Network

view(net)

% Plots

% Uncomment these lines to enable various plots.
% figure, plotperform(tr)

% figure, plottrainstate(tr)
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% figure, plotregression(targets,outputs)

% figure, plotresponse(targets,outputs)

% figure, ploterrcorr(errors)

% figure, plotinerrcorr(inputs,errors)

% Closed Loop Network

% Use this network to do multi-step prediction.

% The function CLOSELOORP replaces the feedback input with a direct
% connection from the output layer.

netc = closeloop(net);

netc.name = [net.name ' - Closed LoopT;

view(netc)

[xc,xic,aic,tc] = preparets(netc,inputSeries,{ },targetSeries);

yc = netc(xc,xic,aic);

closedLoopPerformance = perform(netc,tc,yc);

% Early Prediction Network

% For some applications it helps to get the prediction a

% timestep early.

% The original network returns predicted y(t+1) at the same

% time it is given y(t+1).

% For some applications such as decision making, it would

% help to have predicted y(t+1) once y(t) is available, but

% before the actual y(t+1) occurs.

% The network can be made to return its output a timestep early
% by removing one delay so that its minimal tap delay is now
% 0 instead of 1. The new network returns the same outputs as
% the original network, but outputs are shifted left one timestep.
nets = removedelay(net);

nets.name = [net.name ' - Predict One Step Ahead'];

view(nets)

[xs,xis,ais,ts] = preparets(nets,inputSeries,{},targetSeries);

ys = nets(xs,xis,ais);

earlyPredictPerformance = perform(nets,ts,ys);
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2. mackeyglass.m

% This script generates a Mackey-Glass time series using the 4th order

% Runge-Kutta method.

% The code is a straighforward translation in Matlab of C source code provided by
Roger Jang,

% which is available <http://neural.cs.nthu.edu.tw/jang/dataset/mg/mg.c here>

%% The theory
% Mackey-Glass time series refers to the following, delayed differential

% equation:

% $$\frac{dx(t)}{dt}=\frac{ax(t-\tau) }{1+x(t-\tau)* {10} }-bx(t)
% \hspace{lcm} (1)$$

% It can be numerically solved using, for example, the 4th order
% Runge-Kutta method, at discrete, equally spaced time steps:

% $$x(t+\Delta t) = mackeyglass\ rk4(x(t), x(t-\tau), \Delta t, a, b)$$

% where the function <mackeyglass_rk4.html mackeyglass_rk4> numerically solves
the

% Mackey-Glass delayed differential equation using the 4-th order Runge

% Kutta. This is the RK4 method:

% $$k_1=\Delta t \cdot mackeyglass\ eq(x(t), x(t-\tau), a, b)$$

% $$k_2=\Delta t \cdot mackeyglass\ eq(x(t+\frac{1}{2}k 1), x(t-\tau), a, b)$$
% $3k_3=\Delta t \cdot mackeyglass\ eq(x(t+\frac{1}{2}k_2), x(t-\tau), a, b)$$
% $3k_4=\Delta t \cdot mackeyglass\ eq(x(t+k_3), x(t-\tau), a, b)$$

% $$x(t+\Delta t) = x(t) + \frac{k 1}{6}+ \frac{k 2}{3} + \frac{k _3}{6} +

% \frac{k_4}{6}$$
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% where <mackeyglass_eqg.html mackeyglass _eqg> is the function which return
% the value of the Mackey-Glass delayed differential equation in (1)

% once its inputs and its parameters (a,b) are provided.

%% Input parameters

a =0.2; % value foraineq (1)

b =0.1; % valueforbineq (1)

tau =17; % delay constant ineq (1)

X0  =1.2; % initial condition: x(t=0)=x0

deltat =1; % time step size (which coincides with the integration step)
sample_n = 999; % total no. of samples, excluding the given initial condition
interval =1; % output is printed at every 'interval’ time steps

%% Main algorithm

% * x_t : X at instant t , L.e. x(t) (current value of x)

% * x_t minus_tau : X at instant (t-tau) , i.e. x(t-tau)

% * x_t plus_deltat : x at instant (t+deltat), i.e. x(t+deltat) (next value of x)

% * X : the (sample_n+1)-dimensional vector containing X0 plus all other

computed values of x

% * T : the (sample_n+1)-dimensional vector containing time samples

% * x_history  : a circular vector storing all computed samples within x(t-tau) and
X(t)

time = 0;

index = 1;

history_length = floor(tau/deltat);
x_history = zeros(history_length, 1); % here we assume x(t)=0 for -tau <=t < 0

X_t =x0;

X = zeros(sample_n+1, 1); % vector of all generated x samples

T = zeros(sample_n+1, 1); % vector of time samples



fori = 1l:sample_n+1,
X(@{i)=x_t;
if (mod(i-1, interval) == 0),
disp(sprintf('%4d %f", (i-1)/interval, x_t));
end
if tau == 0,
X_t_minus_tau = 0.0;
else
X_t_minus_tau = x_history(index);
end
x_t_plus_deltat = mackeyglass_rk4(x_t, x_t minus_tau, deltat, a, b);
if (tau ~= 0),
X_history(index) = x_t_plus_deltat;
index = mod(index, history length)+1;
end
time = time + deltat;
T(i) = time;
X_t=x_t plus_deltat;
end
figure
plot(T, X);
set(gca,xlim',[0, T(end)]);
xlabel('t");
ylabel("x(t)");
title(sprintf('A Mackey-Glass time serie (tau=%d)', tau));
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3. mackeyglass eg.m

% This function returns dx/dt of Mackey-Glass delayed differential equation
% $$\frac{dx(t)}{dt}=\frac{ax(t-\tau) }{1+x(t-\tau)*{10} }-bx()$3$
% *Matlab code:*
function x_dot = mackeyglass_eq(x_t, x_t_minus_tau, a, b)
X_dot = -b*x_t + a*x_t_minus_tau/(1 + X_t_minus_tau"10.0);
end

% <mackeyglass.html _back to main_>

4. mackeyalass rk4.m

% This function computes the numerical solution of the Mackey-Glass
% delayed differential equation using the 4-th order Runge-Kutta method

% $$k_1=\Delta t \cdot mackeyglass\ eq(x(t), x(t-\tau), a, b)$$

% $$k_2=\Delta t \cdot mackeyglass\ eq(x(t+\frac{1}{2}k 1), x(t-\tau), a, b)$$
% $$k _3=\Delta t \cdot mackeyglass\ eq(x(t+\frac{1}{2}k 2), x(t-\tau), a, b)$$
% $$k_4=\Delta t \cdot mackeyglass\ eq(x(t+k_3), x(t-\tau), a, b)$$

% $$x(t+\Delta t) = x(t) + \frac{k 1}{6}+ \frac{k_2}{3} + \frac{k_3}{6} +
\frac{k_4}{6}$$

% Here is the code for <mackeyglass_eq.html mackeyglass_eq>,

% the Mackey-Glass delayed differential equation

% *Matlab code:*
function x_t_plus_deltat = mackeyglass_rk4(x_t, x_t minus_tau, deltat, a, b)
k1 = deltat*mackeyglass_eq(x_t, X_t_minus_tau, a, b);
k2 = deltat*mackeyglass_eq(x_t+0.5*k1, x_t minus_tau, a, b);
k3 = deltat*mackeyglass_eq(x_t+0.5*k2, x_t minus_tau, a, b);
k4 = deltat*mackeyglass_eq(x_t+k3,  x_t minus_tau, a, b);
x_t plus_deltat = (x_t + k1/6 + k2/3 + k3/3 + k4/6);
end

% <mackeyglass.html _back to main_>



5. StartRealChua.m
[t,y] = ode45(@RealChua,[0 0.05],[-0.5 -0.2 0]);

plot3(y(:,1).y(:,2).y(:,3))
grid

6. RealChua.m

function out = RealChua(t,in)

X =in(1); %v_1
y =in(2); %v_2
z=1in(3); %i_L

C1l =10*107(-9); %10nF
C2 =100*10"(-9); %100nF
R = 1800; %1.8k Ohms
G=1/R;

%Chua Diode

R1 =220; R2 = 220; R3 = 2200; R4 = 22000; R5 = 22000; R6 = 3300;

Esat = 9; %9V batteries
E1l = R3/(R2+R3)*Esat;
E2 = R6/(R5+R6)*Esat;

m12 = -1/R6;
mO02 = 1/R4;
m01 = 1/R1,
mll = -1/R3;

ml =ml2+m1l1;
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if(E1>E2)

m0 = m11 + mO02;
else

mO0 =m12 + mO01;

end

mml =mO01 + m02;
Emax = max([E1 E2]);
Emin = min([E1 E2]);

if abs(x) < Emin
g =Xx*ml;
elseif abs(x) < Emax
g = x*mo;
if x>0
g =g + Emin*(m1-mO0);
else
g =g + Emin*(m0-m1);
end
elseif abs(x) >= Emax
g = Xx*mm1,;
ifx>0
g = g + Emax*(m0-mm1) + Emin*(m1-m0);
else
g = g + Emax*(mm1-m0) + Emin*(m0-m1);
end

end

%end Chua Diode
%Gyrator

R7 =100; %100 Ohms
R8 =1000; %1k Ohms
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R9 =1000; %1k Ohms
R10 = 1800;

C =100*10"(-9); %100nF
L = R7*R9*C*R10/R8; %18n

%end Gyrator

% Chua's Circuit Equati

xdot =



7. lorenz.m

function [x,y,z] = lorenz(rho, sigma, beta, initV, T, eps)

% LORENZ Function generates the lorenz attractor of the prescribed values

% of parameters rho, sigma, beta

%
% [X,Y,Z] = LORENZ(RHO,SIGMA,BETA,INITV,T,EPS)
% X, Y, Z - output vectors of the strange attactor trajectories
% RHO - Rayleigh number
%  SIGMA - Prandtl number
% BETA - parameter
% INITV - initial point
% T  -timeinterval
%  EPS - ode solver precision
%
% Example.
% [XY Z] = lorenz(28, 10, 8/3);
% plot3(X,Y,2);
if nargin<3

error('MATLAB:lorenz:NotEnoughlnputs','Not enough input arguments.’);

end

if nargin<4

eps = 0.000001;
T =1[025];

initV = [0 1 1.05];

end

options = odeset('RelTol',eps, AbsTol',[eps eps eps/10]);
[T,X] = oded5(@(T,X) F(T, X, sigma, rho, beta), T, initV, options);

plot3(X(:,1),X(:,2),X(:,3));
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axis equal;
grid;
title('Lorenz attractor");
xlabel("X");
ylabel("Y");
zlabel('Z);
X=X(1);y=
return
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8. chaoticmap.m

%THIS PROGRAM IS WRITTEN FOR DEMONSTRATION OF QUADRATIC
MAP (CHAOTIC MAP)

%AND ITS TRAJECTORY,2D MAPPING AND AUTOCORRELATION.

clc; close all; clear all;

A =4; B=.5; phin=0.15; phi(1) = B - A*(phin*2);
for ib = 2:1:1000
phi(ib) = B - (A*(phi(ib-1).72));

end

AST = xcorr(phi,phi);

for tt = 1:1:length(phi)-2
XX(tt) = phi(tt+2);
YY(tt) = phi(tt+1);
ZZ(tt) = phi(tt);

end

figure(1); plot(phi); title(\bf QUADRATIC map');

xlabel('\bf Time series’); ylabel(\bf Amplitude’);

figure(2); plot3(ZZ,YY,XX,'r."; title("\bf Pseudo phase space trajectories’); grid on;
figure(3); plot(ZZ,YY, 'k."); title(\bf Mapping’); xlabel("\bf X(n)"); ylabel(\bf X(n+1)’);
figure(4); plot(AST); title("\bf Auto correlation’); xlabel(\bf Time');

ylabel(\bf correlation value’);

% vary B(bifurcation parameter) = .25 P1,.32 P2,.35 &.37 HIGHER periods,.38

% CHAOTIC OSCILLATIONS
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