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analyzed as a data set using NARX model.  
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Chapter 1 

Introduction 

 

1.1 Introduction 

Chapter 1 discusses the causes and origins of the research process, 

comparison performance of Nonlinear Autoregressive Network with Exogenous 

Inputs Techniques (NARX), Inspiration for research, Importance of the problem 

research, objectives, expected result and technical terms description. 

 

1.2 Backgrounds 

The many problem in Thailand are related Time Series Data. The one of 

solution is predicting event or information for planning or avoid undesirable event.  

This thesis proposes the comparison performance of time series data using 

NARX. The chaotic time series is nonlinear data such as weather, load energy or 

communication. 

 

1.3 Motivations 

In year 2016, the worst traffic in the world is in Bangkok, Thailand. People 

in Bangkok have extremely hasty lifestyle, especially in transportation. However, 

Bangkok traffic problem have not been resolved for a long time. People in Bangkok 

attempt to avoid traffic jam, whereas the traffic cannot be always accurately expected 

even with the use of current applications to view traffic data at that time. The 

application cannot accurately analyze traffic flow for user satisfaction include cannot 

predict traffic flow. The research initiates idea for increasing accurately traffic flow 

analytics system and predict traffic flow using NARX to improve the efficiency of 

analytics in order that people can predict traffic flow and transport plans or avoid the 

crowded route properly. The researcher starts from using chaotic time series instead 

of traffic flow to create NARX. 
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1.4 Statement of Problem and Hypothesis 

The traffic flow analytics in Thailand is high tolerance. This makes 

commercial and personal applications unsatisfactory for some users. The researcher 

initiates from prediction process in this thesis for using to predict a traffic flow in the 

future. 

 

1.5 Objectives 

1.5.1 To study Chaotic Time Series 

1.5.2 To study Nonlinear Autoregressive Network with Exogenous Inputs 

Techniques and Prediction Analysis 

1.5.3 To study Hyperbolic Tangent Sigmoid Transfer Function, Log-

Sigmoid Transfer Function and Radial Basis Transfer Function 

 

1.6 Research Scopes 

1.6.1 Prediction of Chaotic Time Series using NARX on MATLAB. 

1.6.2 Comparison Hyperbolic Tangent Sigmoid Transfer Function, Log-

Sigmoid Transfer Function and Radial Basis Transfer Function 

 

1.7 Expected Outcomes 

1.7.1 Gained knowledge on Chaotic Time Series. 

1.7.2 Gained knowledge on NARX and Prediction Process. 

 

1.8 Definitions 

1.8.1 NARX is a nonlinear autoregressive network with exogenous input 

technique. This means the model relates the current value of a time 

series to both past values of the same series and current and 

exogenous series. 

1.8.2 Chaotic Time Series are ubiquitous in nature such as the tornado, 

stock market, turbulence, and weather. Their functions are different 

in different situations. For example, in the case of tornado, the 

chaotic behavior is harmful to human beings and need to be avoided 

or controlled. But in the case of the activities in human brain, the 
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chaotic behaviors are useful and necessary to sustain the normal 

functions of brain. Thus, it is an important task to understand chaos 

and let it serve human society better. 

1.8.3 MATLAB is a computer program for computing mathematical 

operations from basic mathematics such as adding or subtracting to 

advanced mathematics such as image processing or artificial 

intelligence. MATLAB stands for Matrix Laboratory and is 

originally written for matrix computations. Each of mathematic 

operations in MATLAB is written in MATLAB a command which 

is simple mathematic signs, and advanced MATLAB commands are 

written in human language. Thus, MATLAB commands are easy to 

understand which makes MATLAB widely used in researches. 

Apart from mathematical computations, MATLAB can also be used 

as the computer programming editor using high-level programming 

language which is the MATLAB commands combined together as a 

script for the computer program. Unfortunately, MATLAB is not 

capable of generating the standalone computer program from the 

MATLAB codes without specified plugin, and the MATLAB codes 

are runnable only on MATLAB. Consequently, the MATLAB codes 

from MATLAB have to be written in another programming 

language again to create the standalone computer program. 

1.8.4 Transfer Function is a representation in terms of spatial or temporal 

frequency, of the relation between the input and output of a linear time-

invariant (LTI) system with zero initial conditions and zero-

point equilibrium. For optical imaging devices, for example, the optical 

transfer function is the Fourier transform of the point spread 

function (hence a function of spatial frequency) i.e., the intensity 

distribution caused by a point object in the field of view. A number of 

sources however use "transfer function" to mean some input-output 

characteristic in direct physical measures rather than its transform to 

the s-plane. 

 



Chapter 2 

Related Theories and Literature Reviews 

 

2.1 Introduction 

This chapter describes information of related theories including Mackey 

Glass Equation, Chua’s Circuit, Lorenz Equation, Chaotic Map, NARX Model and 

Levenberg-Marquardt Algorithm. The literature reviews of related research on 

NARX. 

 

2.2 Related Theory 

2.1.1 Mackey Glass Equation 

Mackey Glass Equation [1] is nonlinear time delay differential equation. This 

Mackey Glass Equation displays a range of periodic and chaotic dynamics which 

compatible with simulate fluctuate data and nonlinear data. This equation use to 

simulate traffic flow data. Mackey Glass equation can be described mathematically as  

 

 

   

 
 tbx

tx

tax

dt

tdx







10
1 


 (2.1) 

 

where a  is real numbers, and  t  is value at x time. Depending on the values of 

the parameters, this equation displays a range of periodic and chaotic dynamics. 

 

2.1.2 Chua’s Circuit 

Chua’s Circuit [2] is simplest electronic circuit exhibiting classic chaos 

theory behavior. It produces oscillating waveform. The ease of construction of the 

circuit has made it a ubiquitous real-world example of a chaotic system. 
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Figure 2.1 One version of Chua’s Circuit 

 

Analyzing the circuit using Kirchhoff's circuit laws, the dynamics of Chua's 

circuit can be accurately modeled by means of a system of three nonlinear ordinary 

differential equations in the variables  tx ,  ty  and  tz , which represent the 

voltages across the capacitors C1 and C2, and the electric current in the inductor L1 , 

respectively. These equations are 

 

                                                  
  xfxy

dt

dx


                                                  
(2.2) 

                                                 
Rzyx

dt

dy
RC 2

                                                
(2.3) 

                                                         
y

dt

dz


                                                         
(2.4) 

 

The function f(x) describes the electrical response of the nonlinear resistor, 

and its shape depends on the particular configuration of its components. The 

parameters α and β are determined by the particular values of the circuit components. 

 

2.1.3 Lorenz Equation 

The Lorenz system [3] is a system of ordinary differential equations first 

studied by Edward Lorenz. It is notable for having chaotic solutions for certain 

parameter values and initial conditions. In particular, the Lorenz attractor is a set of 

chaotic solutions of the Lorenz system which, when plotted, resemble a butterfly or 
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figure eight. The model is a system of three ordinary differential equations now 

known as the Lorenz equations can be described mathematically as  

 

                                                        xyx                                                        (2.5) 

                                                      yzxy                                                       (2.6) 

                                                        zxyz                                                         (2.7) 

 

where σ, ρ and β are positive. Lorenz used the values σ = 10, β = 8/3 and ρ = 28.  

 

2.1.4 Chaotic Map 

The system of the quadratic map [4] is chaotic because it has the following 

characteristics. It is nonlinear. The quadratic map can be synchronized through 

coupling. 

 

2.1.5 NARX Model 

Artificial Neural Network [5] is mathematical model apply to evaluate 

information with connectionist technique. This technique emulate from human brain. 

NARX [6] is a nonlinear autoregressive model with exogenous inputs for artificial 

neural network learning with loopback. This technique increases the accuracy for 

learning and prediction. The defining equation for the NARX model is 

 

             
              

uy ntututuntytytyfty  ,...,2,1,,...,2,1
           

(2.8) 

 

where the next value of the dependent output signal y(t) is regressed on previous 

values of the output signal and previous values of an independent (exogenous) input 

signal. You can implement the NARX model by using a feed forward neural network 

to approximate the function f. A diagram of the resulting network is shown below, 

where a two-layer feed forward network is used for the approximation. This 

implementation also allows for a vector ARX model, where the input and output can 

be multidimensional. 



7 

 

There are many applications for the NARX network. It can be used as a 

predictor, to predict the next value of the input signal. It can also be used for nonlinear 

filtering, in which the target output is a noise-free version of the input signal. The use 

of the NARX network is shown in another important application, the modeling of 

nonlinear dynamic systems. 

Before showing the training of the NARX network, an important 

configuration that is useful in training needs explanation. It should be considered that 

the outputs of the NARX network to be an estimate of the output of some nonlinear 

dynamic system that you are trying to model. The output is feedback to the input of 

the feed forward neural network as part of the standard NARX architecture, as shown 

in the left figure below. Because the true output is available during the training of the 

network, you could create a series-parallel architecture, in which the true output is 

used instead of feeding back the estimated output, as shown in the right figure below. 

This has two advantages. The first is that the input to the feed forward network is 

more accurate. The second is that the resulting network has a purely feed forward 

architecture, and static back propagation can be used for training. 

 

 

 

Figure 2.2 Structure of NARX Closed Loop 

 

2.1.6 Levenberg-Marquardt Algorithm 

In mathematics and computing, the Levenberg-Marquardt algorithm [7] 

(LMA or just LM), also known as the damped least-squares (DLS) method, is used to 

solve non-linear least squares problems. These minimization problems arise especially 

in least squares curve fitting. 
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The LMA is used in many software applications for solving generic curve-

fitting problems. However, as with many fitting algorithms, the LMA finds only a 

local minimum, which is not necessarily the global minimum. The LMA interpolates 

between the Gauss–Newton algorithm (GNA) and the method of gradient descent. 

The LMA is more robust than the GNA, which means that in many cases it finds a 

solution even if it starts very far off the final minimum. For well-behaved functions 

and reasonable starting parameters, the LMA tends to be a bit slower than the GNA. 

LMA can also be viewed as Gauss–Newton using a trust region approach. 

  

 2.1.7 Hyperbolic Tangent Sigmoid Transfer Function 

 The Hyperbolic Tangent [8] defined in terms of exponential function as 
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(2.9) 

 

 

 

 

Figure 2.3 Hyperbolic Tangent Sigmoid Transfer Function Graph 

 

 2.1.8 Log-Sigmoid Transfer Function 

A log-sigmoid function [9], also known as a logistic function, is given by the 

relationship as 

 

                                                     
 

te
t







1

1

                                                    (2.10) 
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where β is a slope parameter. This is called the log-sigmoid because a sigmoid can 

also be constructed using the hyperbolic tangent function instead of this relation, in 

which case it would be called a tan-sigmoid. The sigmoid has the property of being 

similar to the step function, but with the addition of a region of uncertainty. Sigmoid 

functions in this respect are very similar to the input-output relationships of biological 

neurons, although not exactly the same. Fig 2.4 is the graph of a sigmoid function. 

 

 

 

Figure 2.4 Log-Sigmoid Transfer Function Graph 

 

Sigmoid functions are also prized because their derivatives are easy to 

calculate, which is helpful for calculating the weight updates in certain training 

algorithms. The derivative when 1  is given by 

 

                                               

 
    tt

dt

td



 1

                                               (2.11) 

 

when 1 , using  
te
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1

1
, , the derivative is given by 
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2.1.9 Radial Basis Transfer Function 

Radial basis function (RBF) [10] networks typically have three layers. The 

three layers are an input layer, a hidden layer with a non-linear RBF activation 

function and a linear output layer. The input can be modeled as a vector of real 

numbers. The output of the network given by 

 

 φ    



N

i

ii cxax
1

||||  (2.13) 

 

where N  is the number of neurons in the hidden layer, iC  is the center vector for 

neuron i , and ia  is the weight of neuron i  in the linear output neuron. Functions that 

depend only on the distance from a center vector are radially symmetric about that 

vector, hence the name radial basis function. In the basic form all inputs are connected 

to each hidden neuron. 

 

 

 

Figure 2.5 Radial Basis Transfer Function Graph 
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2.3 Literature Reviews 

 

Table 2.1 Summary of related researches to the proposed approaches 

Author Year Proposed Schemes 

A. Thakur et al. [11] 2016 NARX Based Forecasting of Petrol Prices 

L. Banjanović-Mehmedović 

et al. [12] 

2016 Prediction of Cooperative Platooning 

Maneuvers Using NARX 

S. Jaiswal et al. [13] 2016 Modeling the Measurement Error of Energy 

Meter Using NARX Model 

L. Zhang et al. [14] 2016 NARX models for predicting power 

consumption of a horizontal axis wind 

turbine 

F. Chang et al. [15] 2016 Estimating spatio-temporal dynamics of 

stream total phosphate concentration by soft 

computing techniques 

L.K. Torres-Faurrieta et al. 

[16] 

2016 Recruitment forecasting of yellow fin tuna in 

the eastern Pacific Ocean with artificial 

neuronal networks 

A.G.R. Vaz et al. [17] 2016 An artificial neural network to assess the 

impact of neighboring photovoltaic systems 

in power forecasting in Utrecht, the 

Netherlands 

Y. Chunshan and 

L.Xiaofeng [18] 

2015 Study and Application of Data Mining and 

NARX Neural Networks in Load 

Forecasting 

H. He et al. [19] 2015 Meridian ECG Information Transmission 

System Modeling Using NARX Neural 

Network 

X. Zhe et al. [20] 2015 Water Distribution Network Modeling Based 

on NARX 
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A. Thakur et al. [11] presents the expectations of gasoline prices with 

dynamic neural imaging theory, with automated regression techniques. Accuracy in 

gasoline pricing is important in maintaining balance for consumer demand and oil 

producers.  

L. Banjanović-Mehmedović et al. [12] offers an intelligent transport system 

that improves traffic agility. In this research, additional systems were developed to 

improve the predictive accuracy of the system by nonlinear autonomic neural network 

techniques with external input data. 

S. Jaiswal et al. [13] presented a nonlinear regression model of the 

metrological error measurement with nonlinear automatic neural network techniques 

with four external inputs. 

L. Zhang et al. [14] presents a linear energy prediction of horizontal axis 

wind turbine using nonlinear automata regression model with external input data. By 

dividing the model into two, the first uses two data inputs. The second uses three 

external input data. The result is the second model has the first high precision results. 

F. Chang et al. [15] proposed an evaluation of the phosphate mineralization 

in streams by artificial intelligence techniques. The artificial intelligence technique 

used in this research is the nonlinear automatic regression neural network technique 

with external input data. Data used for river data in Taiwan with 10 years of water 

quality data collection. The results are based on nonlinear automatic linear regression 

techniques with external input data that accurately and efficiently detect the data. 

L.K. Torres-Faurrieta et al. [16] proposed a prediction of yellowfin tuna in 

the eastern Pacific using nonlinear autoregressive neural network techniques with 

external input data. By dividing the models into two, the results show that the type of 

input fed to the neural network influences the prediction of fish and accuracy. 

A.G.R. Vaz et al. [17] proposed the use of Neural Networks' neural network 

assessment system and its vicinity to anticipating the use of electricity and produce 

sufficiently for precise use. The result is a mean square error of 9 percent to 25 

percent and a prediction of more than 15 minutes. 
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Y. Chunshan and L. Xiaofeng [18] present data mining relationships for 

predicting electricity demand. The use of data mining in the analysis of China's 

electricity use factors indicates that there are some key indicators and that the 

automatic neural network registers are not linear with external inputs. The results 

show a more accurate prediction model. 

 H. He et al. [19] presented an analysis of data on cardiopulmonary resections 

from 10 linear regression lines using nonlinear autonomic neural network technique 

with better external input data than network technique. Automatic linear is retracting 

artificial neural network with external input data. Signs of cardiac catheterization 

from the meridians are accurate to 0.98. 

X. Zhe et al. [20] proposed the use of nonlinear automatic linear neural 

network techniques with external input data for predicting and controlling water 

distribution. Input data used is current and past data. The results from deploying to the 

real network are satisfying, easy to track and predict. 

 

2.4 Conclusion 

This chapter discusses the relevant theoretical information presented in this 

thesis consist of prediction and forecasting using NARX and training NARX. The 

literature reviews of 10 literatures related to the proposed NARX approaches were 

also included. 



Chapter 3 

Research Methodology 

 

3.1  Introduction 

This chapter describes research methodology of this thesis, involving 

research process, data collection, and research tools. 

 

3.2 Research Process 

3.2.1 Study the chaotic time series 

3.2.2 Study the NARX 

3.2.3 Simulate the time series data from equation 

3.2.4 Collect the traffic volume 

3.2.5 Training and prediction using NARX  

 

3.3 Data Collection 

The data in this thesis are simulating from chaotic time series equation and 

collect real traffic volume data from Department of Highways (DOH). 

 

3.4 Research Tools 

3.4.1 MATLAB R2011a 

 

3.5 Conclusion 

This chapter has presented research methodology of this thesis, including 

research process data collection, and research tools. 



Chapter 4 

Experiment Results 

 

4.1 Introduction 

This chapter proposes the prediction of simulate data set using NARX. The 

simulate data set generate by Mackey Glass Equation, Realistic Chua’s Circuit, 

Lorenz Equation and Chaotic Map. MSE Result from each data set were analyzed and 

predicted with NARX on MATLAB. 

 

4.2 Simulate Data Set  

4.2.1 Mackey Glass Equation  

Mackey Glass Equation using 4
th

-Order Runge-Kutta method. This method 

decide step size is 1,  is 17, simulate data set is 1000 and initial condition is 1.2. 

 

 

 

Figure 4.1 Simulated time series of Mackey Glass Equation 

 

4.2.2 Chua’s Circuit 

Realistic Chua’s Circuit is configured resistors are R1=220 Ω, R2=220 Ω, 

R3=2200 Ω, R4=22000 Ω, R5=22000 Ω, R6=3300 Ω, R7=100 Ω, R8=1000 Ω, R9=1000 

Ω, R10=1800 Ω, R=1800 Ω, C=100nF, C1=10nF and C2=100nF 
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Figure 4.2 Schematics of the simulated circuit 

 

  

 

Figure 4.3 Simulated chaotic attractor of Chua Circuit 

 

4.2.3 Lorenz Equation 

Lorenz Equation using the values 10 , 
3

8
  and 28 . 

 

 

 

Figure 4.4 Simulated chaotic attractor of Lorenz Equation 
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4.2.4 Chaotic Map 

Chaotic Map is generated with default value in MATLAB. 

 

 

 

Figure 4.5 Simulated time series of Chaotic Map 

 

4.3 Training NARX Model 

Training NARX Model involve configure weight, number of hidden neurons, 

input and delays. The accuracy base on a configure value. This paper use simulate 

data sets input NARX by Network Time Series Tool in MATLAB. These simulate 

data sets split 3 set. Training set is 70%, validation set is 15% and testing set is 15%. 

 

 

 

Figure 4.6 Structure of NARX Closed Loop Model 
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Figure 4.7 Structure of NARX to Predict One Step Ahead Model 

 

4.4 Prediction Result 

 4.4.1 Hyperbolic Tangent Sigmoid Transfer Function 

The results are divided into 5 groups by simulate data set. The summary of 

MSE results from processing through the NARX model with different number of 

delays and number of hidden neurons. The summary result shown in Table 4.1, 4.2, 

4.3, 4.4, 4.5 and Fig.4.8, 4.9, 4.10, 4.11, 4.12, 4.13 
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Table 4.1 Prediction Result of simulated data from Mackey Glass Equation using  

  Hyperbolic Tangent Sigmoid Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Mackey 

Glass 

Equation 

Hyperbolic 

Tangent 

Sigmoid 

Transfer 

Function 

2 

1 51071.3   

2 51074.3   

3 51098.3   

4 51014.3   

5 51047.2   

6 51026.2   

7 51004.3   

8 51065.2   

9 51081.2   

10 51048.2   

4 

1 61081.7   

2 61093.6   

3 61082.6   

4 51012.1   

5 61006.4   

6 61028.5   

7 61069.4   

8 61037.5   

9 61081.4   

10 71004.5   
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Table 4.2 Prediction Result of simulated data from Chua’s Circuit using Hyperbolic 

  Tangent Sigmoid Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Chua’s 

Circuit 

Hyperbolic 

Tangent 

Sigmoid 

Transfer 

Function 

2 

1 07.0  

2 41043.1   

3 41041.1   

4 41027.1   

5 41014.1   

6 41017.1   

7 41002.1   

8 41005.1   

9 51082.9   

10 51067.7   

4 

1 07.0  

2 41013.1   

3 41011.1   

4 41001.1   

5 41014.1   

6 51012.9   

7 41008.1   

8 51021.8   

9 51069.9   

10 51015.8   
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Table 4.3 Prediction Result of simulated data from Lorenz Equation using Hyperbolic  

  Tangent Sigmoid Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Lorenz 

Equation 

Hyperbolic 

Tangent 

Sigmoid 

Transfer 

Function 

2 

1 68.24  

2 75.2  

3 41010.2   

4 41088.1   

5 41062.1   

6 41060.1   

7 41055.1   

8 41059.1   

9 41046.1   

10 41046.1   

4 

1 57.24  

2 75.2  

3 41092.1   

4 41079.1   

5 41072.1   

6 41054.1   

7 41059.1   

8 41057.1   

9 41054.1   

10 41042.1   
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Table 4.4 Prediction Result of simulated data from Chaotic Map using Hyperbolic  

  Tangent Sigmoid Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of 

Hidden Neurons 
MSE 

Chaotic 

Map 

Hyperbolic 

Tangent 

Sigmoid 

Transfer 

Function 

2 

1 08.0  

2 71047.3   

3 71009.2   

4 81031.9   

5 91069.2   

6 71063.2   

7 81019.3   

8 91091.8   

9 81021.1   

10 101095.1   

4 

1 12.0  

2 05.0  

3 71045.3   

4 81035.9   

5 71031.3   

6 71054.1   

7 71044.1   

8 71070.1   

9 81081.4   

10 91033.5   
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Table 4.5 Prediction Result of real data from Collection using Hyperbolic Tangent   

  Sigmoid Function 

Data Set 
Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of 

Hidden Neurons 
MSE 

Department of 

Highways 

Hyperbolic 

Tangent 

Sigmoid 

Transfer 

Function 

2 

1 41079.1   

2 41079.1   

3 41005.2   

4 41035.2   

5 41087.1   

6 41000.2   

7 41088.1   

8 41000.2   

9 41061.2   

10 41062.1   

4 

1 41086.1   

2 41075.1   

3 41040.1   

4 61095.1   

5 41010.2   

6 41081.1   

7 41091.1   

8 41062.2   

9 41082.1   

10 51035.4   
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Figure 4.8 The Comparison between output values and predicted values from Mackey  

 Glass Equation using Hyperbolic Tangent Sigmoid Transfer Function 

 

 

 

Figure 4.9 The Comparison between output values and predicted values from Chua’s  

 Circuit using Hyperbolic Tangent Sigmoid Transfer Function 

 

 

 

Figure 4.10 The Comparison between output values and predicted values from 

 Lorenz Equation using Hyperbolic Tangent Sigmoid Transfer Function 
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Figure 4.11 The Comparison between output values and predicted values from 

 Chaotic Map using Hyperbolic Tangent Sigmoid Transfer Function 

 

 

 

Figure 4.12 Result Experiment by Number of Delays 2 using Hyperbolic Tangent  

  Sigmoid Transfer Function 

 

 

 

Figure 4.13 Result Experiment by Number of Delays 4 using Hyperbolic Tangent  

  Sigmoid Transfer Function 
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4.4.2 Log-Sigmoid Transfer Function 

The summary result shown in Table 4.6, 4.7, 4.8, 4.9, 4.10 and Fig.4.14, 

4.15, 4.16, 4.17, 4.18, 4.19 

 

Table 4.6 Prediction Result of simulated data from Mackey Glass using Log-Sigmoid  

  Transfer Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Mackey 

Glass 

Equation 

Log-Sigmoid 

Transfer 

Function 

2 

1 51073.3   

2 51069.3   

3 51058.3   

4 51053.2   

5 51038.2   

6 51040.2   

7 51088.2   

8 51066.2   

9 51045.2   

10 51099.2   

4 

1 61003.8   

2 61056.6   

3 61016.3   

4 61068.3   

5 61009.4   

6 61061.3   

7 61054.4   

8 61095.3   

9 61067.3   

10 61090.1   
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Table 4.7 Prediction Result of simulated data from Chua’s Circuit using Log-Sigmoid  

  Transfer Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Chua’s 

Circuit 

Log-Sigmoid 

Transfer 

Function 

2 

1 07.0  

2 41043.1   

3 41023.1   

4 41024.1   

5 51078.9   

6 51070.8   

7 41004.1   

8 41003.1   

9 51093.9   

10 41000.1   

4 

1 07.0  

2 41013.1   

3 41004.1   

4 41010.1   

5 41009.1   

6 41010.1   

7 51044.8   

8 51070.9   

9 51031.7   

10 51053.8   
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Table 4.8 Prediction Result of simulated data from Lorenz Equation using Log- 

  Sigmoid Transfer Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Lorenz 

Equation 

Log-Sigmoid 

Transfer 

Function 

2 

1 63.24  

2 75.2  

3 41006.2   

4 41081.1   

5 41067.1   

6 41060.1   

7 41053.1   

8 41057.1   

9 41050.1   

10 41050.1   

4 

1 57.24  

2 75.2  

3 75.2  

4 41082.1   

5 41053.1   

6 41059.1   

7 41046.1   

8 41056.1   

9 41055.1   

10 41038.1   
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Table 4.9 Prediction Result of simulated data from Chaotic Map using Log-Sigmoid  

  Transfer Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Chaotic Map 

Log-Sigmoid 

Transfer 

Function 

2 

1 08.0  

2 71052.7   

3 91050.1   

4 81058.2   

5 71038.2   

6 61027.1   

7 101044.8   

8 81037.7   

9 101037.4   

10 81050.2   

4 

1 08.0  

2 11.0  

3 81010.3   

4 61030.2   

5 61086.4   

6 71005.4   

7 71037.6   

8 61026.2   

9 61079.2   

10 71080.4   
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Table 4.10 Prediction Result of real data from Collection using Log-Sigmoid Transfer  

  Function 

Data Set 
Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Department 

of Highways 

Log-Sigmoid 

Transfer 

Function 

2 

1 41080.1   

2 41051.5   

3 41085.1   

4 41088.2   

5 41082.1   

6 41099.8   

7 41006.2   

8 41073.2   

9 41004.3   

10 41075.6   

4 

1 41071.1   

2 41034.1   

3 41022.2   

4 41074.1   

5 41079.1   

6 41065.6   

7 41010.5   

8 51025.3   

9 41081.2   

10 51052.3   
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Figure 4.14 The Comparison between output values and predicted values from  

 Mackey Glass Equation using Log-Sigmoid Transfer Function 

 

 

 

Figure 4.15 The Comparison between output values and predicted values from  

 Chua’s Circuit using Log-Sigmoid Transfer Function 

 

 

 

Figure 4.16 The Comparison between output values and predicted values from  

 Lorenz Equation using Log-Sigmoid Transfer Function 
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Figure 4.17 The Comparison between output values and predicted values from  

 Chaotic Map using Log-Sigmoid Transfer Function 

 

 

 

Figure 4.18 Result Experiment by Number of Delays 2 using Log-Sigmoid Transfer  

  Function 

 

 

 

Figure 4.19 Result Experiment by Number of Delays 4 using Log-Sigmoid Transfer  

  Function 
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4.4.3 Radial Basis Transfer Function 

The summary result shown in Table 4.11, 4.12, 4.13, 4.14, 4.15 and Fig.4.20, 

4.21, 4.22, 4.23, 4.24, 4.25 

 

Table 4.11 Prediction Result of simulated data from Mackey Glass Equation using  

  Radial Basis Transfer Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Mackey 

Glass 

Equation 

Radial Basis 

Transfer 

Function 

2 

1 51073.3   

2 51068.3   

3 51062.2   

4 51054.2   

5 51041.2   

6 51000.4   

7 51046.2   

8 51048.2   

9 51044.2   

10 51028.2   

4 

1 61090.7   

2 61068.7   

3 61090.3   

4 61061.3   

5 61080.3   

6 61092.4   

7 71099.9   

8 61096.4   

9 61095.9   

10 61005.1   
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Table 4.12 Prediction Result of simulated data from Chua’s Circuit using Radial  

  Basis Transfer Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Chua’s 

Circuit 

Radial Basis 

Transfer 

Function 

2 

1 07.0  

2 41043.1   

3 41049.1   

4 41042.1   

5 51013.9   

6 41023.1   

7 41007.1   

8 41006.1   

9 41007.1   

10 51026.8   

4 

1 35.0  

2 41013.1   

3 41006.1   

4 51050.9   

5 51064.8   

6 41007.1   

7 51096.8   

8 41002.1   

9 51030.9   

10 51058.8   
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Table 4.13 Prediction Result of simulated data from Lorenz Equation using Radial  

      Basis Transfer Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Lorenz 

Equation 

Radial Basis 

Transfer 

Function 

2 

1 64.24  

2 39.7  

3 41008.2   

4 41024.2   

5 41099.1   

6 41076.1   

7 41059.1   

8 41064.1   

9 41069.1   

10 41059.1   

4 

1 58.24  

2 75.2  

3 41092.1   

4 41079.1   

5 41064.1   

6 41049.1   

7 41059.1   

8 41055.1   

9 41045.1   

10 41036.1   
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Table 4.14 Prediction Result of simulated data from Chaotic Map using Radial Basis  

  Transfer Function 

Simulated 

Data Set 

Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Chaotic Map 

Radial Basis 

Transfer 

Function 

2 

1 81065.1   

2 71088.6   

3 41086.3   

4 81062.8   

5 81054.4   

6 81005.6   

7 71091.2   

8 81064.2   

9 71018.3   

10 71081.1   

4 

1 81064.1   

2 07.0  

3 04.0  

4 01.0  

5 91074.1   

6 71075.1   

7 05.0  

8 51048.1   

9 51095.6   

10 71054.1   
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Table 4.15 Prediction Result of real data from Collection using Radial Basis Transfer  

  Function 

Data Set 
Transfer 

Function 

Experiment Results 

Number of 

Delays 

Number of Hidden 

Neurons 
MSE 

Department 

of Highways 

Radial Basis 

Transfer 

Function 

2 

1 51026.3   

2 41023.2   

3 41073.1   

4 41056.4   

5 41001.6   

6 41069.2   

7 41072.6   

8 41083.1   

9 41051.4   

10 41095.3   

4 

1 51027.3   

2 41079.1   

3 41085.1   

4 41057.3   

5 41005.4   

6 41033.1   

7 51043.2   

8 41000.4   

9 41023.3   

10 41004.4   
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Figure 4.20 The Comparison between output values and predicted values from  

 Mackey Glass Equation using Radial Basis Transfer Function 

 

 

 

Figure 4.21 The Comparison between output values and predicted values from  

 Chua’s Circuit using Radial Basis Transfer Function 

 

 

 

Figure 4.22 The Comparison between output values and predicted values from  

 Lorenz Equation using Radial Basis Transfer Function 
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Figure 4.23 The Comparison between output values and predicted values from  

 Chaotic Map using Radial Basis Transfer Function 

 

 

 

Figure 4.24 Result Experiment by Number of Delays 2 using Radial Basis Transfer  

  Function 

 

 

 

Figure 4.25 Result Experiment by Number of Delays 4 using Radial Basis Transfer  

  Function 
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4.5 Conclusion 

The simulate data sets are nonlinear data using to training neural network and 

compare to find optimal value for configuration NARX. The NARX technique is used 

to analyze and predict chaotic time series. It was found delays, hidden neurons, data 

volume and transfer function influenced the predictive accuracy of data. In the future, 

NARX Model can develop to improve accuracy for applies to communication system 

based on mobile application or web application. 

 

 



Chapter 5 

Conclusion 

 

5.1 Introduction 

This chapter summarizes the thesis research and suggestion for further 

researches and implementation. The first part of this chapter summarizes the objectives 

and proposed approaches in this thesis. The second part of this chapter discusses the 

results from the proposed implementations. 

 

5.2 Summary 

The objectives of this thesis as described in the first chapter were, to study 

Chaotic Time Series. This thesis has satisfied all objectives described in the first chapter. 

The Chaotic Time Series were generated on MATLAB, prediction using NARX with 

configuration and comparison performance in this thesis. 

 

5.3 Suggestion 

In the future, NARX Model Develop to improve accuracy for applying to 

communication system based on mobile application or web application. 

 

5.4 Conclusion 

The NARX technique is used to analyze and predict chaotic time series. It was 

found delays, hidden neurons, data volume and transfer function influenced the predictive 

accuracy of data. 
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1. NARX.m 

% Solve an Autoregression Problem with External  

% Input with a NARX Neural Network 

% Script generated by NTSTOOL 

 

% This script assumes the variables on the right of  

% these equalities are defined: 

 

inputSeries = mackeyGlassInput; 

targetSeries = mackeyGlassOutput; 

 

% inputSeries = tonndata(realChuaInput,false,false); 

% targetSeries = tonndata(realChuaOutput,false,false); 

 

% inputSeries = tonndata(lorenzInput,false,false); 

% targetSeries = tonndata(lorenzOutput,false,false); 

 

% inputSeries = chaoticMapInput; 

% targetSeries = chaoticMapOutput; 

 

% inputSeries = TRAFFIC_CELL; 

% targetSeries = TRAFFIC_CELL; 

 

% Create a Nonlinear Autoregressive Network with External Input 

delay = 1:2; 

hiddenLayerSize = 10; 

inputDelays = delay; 

feedbackDelays = delay; 

net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize); 

 

% Prepare the Data for Training and Simulation 

% The function PREPARETS prepares time series data  
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% for a particular network, shifting time by the minimum  

% amount to fill input states and layer states. 

% Using PREPARETS allows you to keep your original  

% time series data unchanged, while easily customizing it  

% for networks with differing numbers of delays, with 

% open loop or closed loop feedback modes. 

[inputs,inputStates,layerStates,targets] = ...  

preparets(net,inputSeries,{},targetSeries); 

  

% net.layers{1}.transferFcn = 'logsig'; 

% net.layers{1}.transferFcn = 'radbas'; 

  

% Set up Division of Data for Training, Validation, Testing 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

  

% Train the Network 

[net,tr] = train(net,inputs,targets,inputStates,layerStates); 

  

% Test the Network 

outputs = net(inputs,inputStates,layerStates); 

errors = gsubtract(targets,outputs); 

performance = perform(net,targets,outputs); 

  

% View the Network 

view(net) 

  

% Plots 

% Uncomment these lines to enable various plots. 

% figure, plotperform(tr) 

% figure, plottrainstate(tr) 
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% figure, plotregression(targets,outputs) 

% figure, plotresponse(targets,outputs) 

% figure, ploterrcorr(errors) 

% figure, plotinerrcorr(inputs,errors) 

% Closed Loop Network 

% Use this network to do multi-step prediction. 

% The function CLOSELOOP replaces the feedback input with a direct 

% connection from the output layer. 

netc = closeloop(net); 

netc.name = [net.name ' - Closed Loop']; 

view(netc) 

[xc,xic,aic,tc] = preparets(netc,inputSeries,{},targetSeries); 

yc = netc(xc,xic,aic); 

closedLoopPerformance = perform(netc,tc,yc); 

% Early Prediction Network 

% For some applications it helps to get the prediction a  

% timestep early. 

% The original network returns predicted y(t+1) at the same  

% time it is given y(t+1). 

% For some applications such as decision making, it would  

% help to have predicted y(t+1) once y(t) is available, but  

% before the actual y(t+1) occurs. 

% The network can be made to return its output a timestep early  

% by removing one delay so that its minimal tap delay is now  

% 0 instead of 1.  The new network returns the same outputs as  

% the original network, but outputs are shifted left one timestep. 

nets = removedelay(net); 

nets.name = [net.name ' - Predict One Step Ahead']; 

view(nets) 

[xs,xis,ais,ts] = preparets(nets,inputSeries,{},targetSeries); 

ys = nets(xs,xis,ais); 

earlyPredictPerformance = perform(nets,ts,ys); 
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2. mackeyglass.m 

% This script generates a Mackey-Glass time series using the 4th order 

% Runge-Kutta method. 

% The code is a straighforward translation in Matlab of C source code provided by 

Roger Jang, 

% which is available <http://neural.cs.nthu.edu.tw/jang/dataset/mg/mg.c here> 

   

%% The theory 

% Mackey-Glass time series refers to the following, delayed differential 

% equation: 

  

% $$\frac{dx(t)}{dt}=\frac{ax(t-\tau)}{1+x(t-\tau)^{10}}-bx(t) 

% \hspace{1cm} (1)$$ 

  

% It can be numerically solved using, for example, the 4th order 

% Runge-Kutta method, at discrete, equally spaced time steps: 

 

% $$x(t+\Delta t) = mackeyglass\_rk4(x(t), x(t-\tau), \Delta t, a, b)$$ 

 

 % where the function <mackeyglass_rk4.html mackeyglass_rk4> numerically solves 

the 

% Mackey-Glass delayed differential equation using the 4-th order Runge 

% Kutta. This is the RK4 method: 

  

% $$k_1=\Delta t \cdot mackeyglass\_eq(x(t), x(t-\tau), a, b)$$ 

% $$k_2=\Delta t \cdot mackeyglass\_eq(x(t+\frac{1}{2}k_1), x(t-\tau), a, b)$$ 

% $$k_3=\Delta t \cdot mackeyglass\_eq(x(t+\frac{1}{2}k_2), x(t-\tau), a, b)$$ 

% $$k_4=\Delta t \cdot mackeyglass\_eq(x(t+k_3), x(t-\tau), a, b)$$ 

% $$x(t+\Delta t) = x(t) + \frac{k_1}{6}+ \frac{k_2}{3} + \frac{k_3}{6} + 

% \frac{k_4}{6}$$ 
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% where <mackeyglass_eq.html mackeyglass_eq> is the function which return  

% the value of the Mackey-Glass delayed differential equation in (1) 

% once its inputs and its parameters (a,b) are provided. 

 

%% Input parameters 

a        = 0.2;     % value for a in eq (1) 

b        = 0.1;     % value for b in eq (1) 

tau      = 17;      % delay constant in eq (1) 

x0       = 1.2;     % initial condition: x(t=0)=x0 

deltat   = 1;       % time step size (which coincides with the integration step) 

sample_n = 999; % total no. of samples, excluding the given initial condition 

interval = 1;       % output is printed at every 'interval' time steps 

  

%% Main algorithm 

% * x_t             : x at instant t         , i.e. x(t)        (current value of x) 

% * x_t_minus_tau   : x at instant (t-tau)   , i.e. x(t-tau)    

% * x_t_plus_deltat : x at instant (t+deltat), i.e. x(t+deltat) (next value of x) 

% * X               : the (sample_n+1)-dimensional vector containing x0 plus all other 

computed values of x 

% * T               : the (sample_n+1)-dimensional vector containing time samples 

% * x_history       : a circular vector storing all computed samples within x(t-tau) and 

x(t) 

  

time = 0; 

index = 1; 

history_length = floor(tau/deltat); 

x_history = zeros(history_length, 1); % here we assume x(t)=0 for -tau <= t < 0 

x_t = x0; 

  

X = zeros(sample_n+1, 1); % vector of all generated x samples 

T = zeros(sample_n+1, 1); % vector of time samples 
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for i = 1:sample_n+1, 

X(i) = x_t; 

if (mod(i-1, interval) == 0), 

disp(sprintf('%4d %f', (i-1)/interval, x_t)); 

end 

if tau == 0, 

x_t_minus_tau = 0.0; 

else 

x_t_minus_tau = x_history(index); 

end 

x_t_plus_deltat = mackeyglass_rk4(x_t, x_t_minus_tau, deltat, a, b); 

if (tau ~= 0), 

x_history(index) = x_t_plus_deltat; 

index = mod(index, history_length)+1; 

end 

time = time + deltat; 

T(i) = time; 

x_t = x_t_plus_deltat; 

end 

figure 

plot(T, X); 

set(gca,'xlim',[0, T(end)]); 

xlabel('t'); 

ylabel('x(t)'); 

title(sprintf('A Mackey-Glass time serie (tau=%d)', tau)); 
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3. mackeyglass_eq.m 

% This function returns dx/dt of Mackey-Glass delayed differential equation 

% $$\frac{dx(t)}{dt}=\frac{ax(t-\tau)}{1+x(t-\tau)^{10}}-bx(t)$$ 

% *Matlab code:* 

function x_dot = mackeyglass_eq(x_t, x_t_minus_tau, a, b) 

x_dot = -b*x_t + a*x_t_minus_tau/(1 + x_t_minus_tau^10.0); 

end 

% <mackeyglass.html _back to main_> 

 

4. mackeyglass_rk4.m 

% This function computes the numerical solution of the Mackey-Glass 

% delayed differential equation using the 4-th order Runge-Kutta method 

 

% $$k_1=\Delta t \cdot mackeyglass\_eq(x(t), x(t-\tau), a, b)$$ 

% $$k_2=\Delta t \cdot mackeyglass\_eq(x(t+\frac{1}{2}k_1), x(t-\tau), a, b)$$ 

% $$k_3=\Delta t \cdot mackeyglass\_eq(x(t+\frac{1}{2}k_2), x(t-\tau), a, b)$$ 

% $$k_4=\Delta t \cdot mackeyglass\_eq(x(t+k_3), x(t-\tau), a, b)$$ 

% $$x(t+\Delta t) = x(t) + \frac{k_1}{6}+ \frac{k_2}{3} + \frac{k_3}{6} + 

\frac{k_4}{6}$$ 

  

% Here is the code for <mackeyglass_eq.html mackeyglass_eq>,  

% the Mackey-Glass delayed differential equation 

 

% *Matlab code:* 

function x_t_plus_deltat = mackeyglass_rk4(x_t, x_t_minus_tau, deltat, a, b) 

k1 = deltat*mackeyglass_eq(x_t,          x_t_minus_tau, a, b); 

k2 = deltat*mackeyglass_eq(x_t+0.5*k1,   x_t_minus_tau, a, b); 

k3 = deltat*mackeyglass_eq(x_t+0.5*k2,   x_t_minus_tau, a, b); 

k4 = deltat*mackeyglass_eq(x_t+k3,       x_t_minus_tau, a, b); 

x_t_plus_deltat = (x_t + k1/6 + k2/3 + k3/3 + k4/6); 

end 

% <mackeyglass.html _back to main_> 
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5. StartRealChua.m 

[t,y] = ode45(@RealChua,[0 0.05],[-0.5 -0.2 0]); 

plot3(y(:,1),y(:,2),y(:,3)) 

grid 

 

6. RealChua.m 

function out = RealChua(t,in) 

 

x = in(1); %v_1 

y = in(2); %v_2 

z = in(3); %i_L 

  

C1  = 10*10^(-9);   %10nF 

C2  = 100*10^(-9);  %100nF 

R = 1800;           %1.8k Ohms 

G = 1/R; 

  

%Chua Diode 

R1 = 220; R2 = 220; R3 = 2200; R4 = 22000; R5 = 22000; R6 = 3300; 

 

Esat = 9; %9V batteries 

E1 = R3/(R2+R3)*Esat; 

E2 = R6/(R5+R6)*Esat; 

  

m12 = -1/R6; 

m02 = 1/R4; 

m01 = 1/R1; 

m11 = -1/R3; 

  

m1 = m12+m11; 
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if(E1>E2) 

m0 = m11 + m02; 

else 

m0 = m12 + m01;    

end 

  

mm1 = m01 + m02; 

Emax = max([E1 E2]); 

Emin = min([E1 E2]); 

 

if abs(x) < Emin 

g = x*m1;      

elseif abs(x) < Emax  

g = x*m0; 

if x > 0 

g = g + Emin*(m1-m0);     

else 

g = g + Emin*(m0-m1);   

end 

elseif abs(x) >= Emax 

g = x*mm1;     

if x > 0 

g = g + Emax*(m0-mm1) + Emin*(m1-m0); 

else 

g = g + Emax*(mm1-m0) +  Emin*(m0-m1); 

end 

end 

  

%end Chua Diode  

%Gyrator 

R7  = 100;  %100 Ohms 

R8  = 1000; %1k Ohms 
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R9  = 1000; %1k Ohms 

R10 = 1800; 

C   = 100*10^(-9); %100nF 

L = R7*R9*C*R10/R8; %18mH  

  

%end Gyrator 

  

% Chua's Circuit Equations 

xdot = (1/C1)*(G*(y-x)-g); 

ydot = (1/C2)*(G*(x-y)+z); 

zdot  = -(1/L)*y; 

  

out = [xdot ydot zdot]'; 
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7. lorenz.m 

function [x,y,z] = lorenz(rho, sigma, beta, initV, T, eps) 

% LORENZ Function generates the lorenz attractor of the prescribed values 

% of parameters rho, sigma, beta 

% 

%   [X,Y,Z] = LORENZ(RHO,SIGMA,BETA,INITV,T,EPS) 

%       X, Y, Z - output vectors of the strange attactor trajectories 

%       RHO     - Rayleigh number 

%       SIGMA   - Prandtl number 

%       BETA    - parameter 

%       INITV   - initial point 

%       T       - time interval 

%       EPS     - ode solver precision 

% 

% Example. 

%        [X Y Z] = lorenz(28, 10, 8/3); 

%        plot3(X,Y,Z); 

  

if nargin<3 

error('MATLAB:lorenz:NotEnoughInputs','Not enough input arguments.');  

end 

  

if nargin<4 

eps = 0.000001; 

T = [0 25]; 

initV = [0 1 1.05]; 

end 

  

options = odeset('RelTol',eps,'AbsTol',[eps eps eps/10]); 

[T,X] = ode45(@(T,X) F(T, X, sigma, rho, beta), T, initV, options); 

  

plot3(X(:,1),X(:,2),X(:,3)); 
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axis equal;  

grid;  

title('Lorenz attractor');  

xlabel('X');  

ylabel('Y');  

zlabel('Z');  

x = X(:,1); y = X(:,2); z = X(:,3); 

return 

end 

  

function dx = F(T, X, sigma, rho, beta) 

% Evaluates the right hand side of the Lorenz system 

% x' = sigma*(y-x) 

% y' = x*(rho - z) - y 

% z' = x*y - beta*z 

% typical values: rho = 28; sigma = 10; beta = 8/3; 

  

dx = zeros(3,1); 

dx(1) = sigma*(X(2) - X(1)); 

dx(2) = X(1)*(rho - X(3)) - X(2); 

dx(3) = X(1)*X(2) - beta*X(3); 

return 

end 
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8. chaoticmap.m 

%THIS PROGRAM IS WRITTEN FOR DEMONSTRATION OF QUADRATIC 

MAP (CHAOTIC MAP) 

%AND ITS TRAJECTORY,2D MAPPING AND AUTOCORRELATION. 

clc; close all; clear all; 

  

A = 4;  B = .5;  phin = 0.15;  phi(1) = B - A*(phin^2); 

for ib = 2:1:1000 

phi(ib) = B - (A*(phi(ib-1).^2));     

end 

  

AST = xcorr(phi,phi); 

for tt = 1:1:length(phi)-2     

XX(tt) =  phi(tt+2); 

YY(tt) =  phi(tt+1); 

ZZ(tt) =  phi(tt);     

end 

 

figure(1); plot(phi); title('\bf QUADRATIC map');  

xlabel('\bf Time series'); ylabel('\bf Amplitude'); 

figure(2); plot3(ZZ,YY,XX,'r.'); title('\bf Pseudo phase space trajectories'); grid on; 

figure(3); plot(ZZ,YY,'k.'); title('\bf Mapping'); xlabel('\bf X(n)'); ylabel('\bf X(n+1)'); 

figure(4); plot(AST); title('\bf Auto correlation'); xlabel('\bf Time'); 

ylabel('\bf correlation value'); 

% vary B(bifurcation parameter) = .25 P1,.32 P2,.35 &.37 HIGHER periods,.38 

% CHAOTIC OSCILLATIONS 
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