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 This thesis has proposed indoor localization approaches. where the increase 

in ubiquitous computing and context-dependent have led to an emphasis on a 

continuous search for promising localization technologies and techniques. Typical 

RF-Based localization technologies such as Cellular, RFID, Bluetooth, Wi-Fi, Zigbee, 

and UWB have been widespread studied over the past decades. Recently, LoRa� 

communication technology has been suggested as a potential alternative to those of 

exiting wireless communication standards with low power consumption and low 

implementation costs. This thesis therefore presents an indoor localization technique 

through the use of Received Signal Strength Indicator (RSSI) of LoRa Technology. 

The LoRa chip from SEMTECH utilized on a compact board with built-in antenna. 

The Arduino microcontroller employed as a core processor with a step-down 

switching regulator. Five sets of LoRa nodes were implemented and four of which 

were utilized as static nodes, radiating a signal power from 5-meter high from the 

floor. The receiving node placed in a particular coordinate on the floor. The Received 

Signal Strength values were employed as inputs for Artificial Neural Network (ANN) 

for estimation of the coordination of the receiving node. The accuracy was approximately 

95%. The results provide satisfactory accuracy and low-power operation as for an 

alternative for large scales deployments of indoor localization. 
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Chapter 1 

Introduction 

 

1.1 Introduction 

 1.1.1  Low-Power Wide-Area Networks 

                 The purpose of this thesis is to give an introductory technical overview 

to LoRa® and LoRaWAN™. Low–Power, Wide-Area Networks (LPWAN) are 

projected to support a major portion of the billions of devices forecasted for the 

Internet of Things (IoT). LoRaWAN™ is designed from the bottom up to optimize 

LPWANs for battery lifetime, capacity, range, and cost. A summary of the 

LoRaWAN™ specification for the different regions will be given as well as high level 

comparison of the different technologies competing in the LPWAN space. 

                 LoRa® is the physical layer or the wireless modulation utilized to 

create the long-range communication link. Many legacy wireless systems use 

Frequency Shifting Keying (FSK) modulation as the physical layer because it is a 

very efficient modulation for achieving low power. LoRa® is based on chirp spread 

spectrum modulation, which maintains the same low power characteristics as FSK 

modulation but significantly increases the communication range. Chirp spread 

spectrum has been used in military and space communication for decades due to the 

long communication distances that can be achieved and robustness to interference, but 

LoRa® is the first low cost implementation for commercial usage, as shown in Figure 

1.2. 

                 The advantage of LoRa® is its. long-range capability. A single 

gateway or base station can cover entire cities or hundreds of square kilometers. 

Range highly depends on the environment or obstructions in a given location, but 

LoRa® and LoRaWAN™ have a link budget greater than any other standardized 

communication technology. The link budget, typically given in decibels (dB), is the 

primary factor in determining the range in a given environment. Figure 1 are the 

coverage maps from the Proximus network deployed in Belgium. With a minimal 

amount of infrastructure, entire countries can easily be covered. 
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Figure 1.1 A single gateway can cover countries entire cities of square kilometers 

 

 

 

Figure 1.2 IoT Technology Comparison 

 

                 One technology cannot serve all of the projected applications and 

volumes for IoT. WiFi and BLE are widely adopted standards and serve the 

applications related to communicating personal devices quite well. Cellular 

technology is a great fit for applications that need high data throughput and have a 

power source. LPWAN offers multi-year battery lifetime and is designed for sensors 

and applications that need to send small amounts of data over long distances a few 

times per hour from varying environments. 

                 The essential difference between the Internet and “the Internet of 

Things” (IoT) [1] is that in the IoT, there is just less of everything available in a given 

device or network device: less memory, less processing power, less bandwidth and of 

course, less available energy. This is either because “things” are battery driven and 
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maximizing lifetime is a priority or because their number is expected to be massive it 

is estimated that there will be 50 billion connected devices by 2020 [2]. This drive to 

do more with less leads to constraints that limit the applicability of traditional cellular 

networks, as well as of technologies, such as WIFI, due to energy and scalability 

requirements. Another range of protocols and technologies has emerged to fulfill the 

communication requirements of the IoT: Low-Power Wide Area Networks 

(LPWAN). Colloquially speaking, an LPWAN is supposed to be to the IoT WiFi was 

to consumer networking: offering radio coverage over a very large area by way of 

base stations and adapting transmission rates, transmission power, modulation, duty 

cycles, such that end-devices incur a very low energy consumption due to them being 

connected. LoRa is one such LPWAN protocol and the subject of study for this 

thesis. LoRa targets deployments where end-devices have limited energy where end-

devices do not need to transmit more than a few bytes at a time [3] and where data 

traffic can be initiated either by the end-device (such as when the end-device is a 

sensor) or by an external entity wishing to communicate with the end-device (such as 

when the end-device is an actuator). The long-range and low-power nature of LoRa 

makes it an interesting candidate for smart sensing technology in civil infrastructures 

(such as health monitoring, smart metering, environment monitoring, etc.), as well as 

in industrial applications. 

 

 1.1.2 Indoor positioning 

                  Indoor Positioning Systems (IPS) use sensors and communication 

technologies to locate objects in indoor environments. IPS are attracting scientific and 

enterprise interest because there is a big market opportunity for applying these 

technologies. There are many previous surveys on indoor positioning systems 

however, most of them lack a solid classification scheme that would structurally map 

a wide field such as IPS, or omit several key technologies or have a limited 

perspective; finally, surveys rapidly become obsolete in an area as dynamic as IPS. 

The goal of this thesis is to provide a technological perspective of indoor positioning 

systems, comprising a LoRa technology classify the existing approaches in a 

structure in order to guide the review and discussion of the different approaches. 
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Finally, present a comparison of indoor positioning approaches and present the 

evolution and trends that foresee, as shown in Figure 1.3. 

 

 1.1.3 Location based services and indoor navigation in railway stations    

  1.1.3.1 Railway station solutions             

   Modern railway stations must satisfy high requirements: of 

course, it is extremely important that passengers reach their destination fast and safe. 

Especially people with reduced mobility may welcome support. The large number of 

merchants wishes for a good platform to present themselves and the possibility to 

realize location-based advertising. For the station operator a lot of opportunities arise 

considering facility management.     

 

  1.1.3.2 Advantages for merchants and restaurants 

                          Merchants can send their potential customers tailored offers – 

for example picking those who have already been to similar shops or who are 

returning visitors. And for sure everyone is delighted by a discount of his favorite 

shop pushed directly on his smartphone. 

 

 

 

Figure 1.3 Location based services and indoor navigation in railway stations 
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  1.1.3.3 Advantages for railway station operators 

                           Using indoor location analytics, station operators gain a lot of 

information about visitor flows inside the building. With a clearly arranged web 

interface they see much frequented areas and can act if it tends to become 

overcrowded. Based on these data a lot of further functions can be realized, as shown 

in Figure 1.4. 

 

 1.1.4 Location based services and indoor navigation in airport 

  1.1.4.1 Airport solutions 

                            When people want to go on holiday by plane most of them are 

both full of anticipation and tension. Business travelers want to keep the waiting times 

to a minimum and make good use of it. As an airport operator it is goal to offer 

passengers a trouble-free and comfortable stay. Shops and restaurants wish for 

passengers who have enough free time to consume, as shown in Figure 1.1.4.3 

 

  1.1.4.2 Advantages for passengers 

      People who travel infrequently may need support in complex 

infrastructures like airports. Starting holidays relaxed is not so easy when you are 

confronted with unknown surroundings, tricky routing and foreign languages on 

journey. Especially people with reduced mobility may have specific requirements. 

                            This is where the benefits of indoor navigation become 

apparent. It shows the exact routing from car park or railway station to the terminal. It 

is even possible to implement intermodal door to door navigation. When passengers 

cover the distance quickly, there still remains enough time to discover shops or take a 

break in a restaurant. Merchants can push tailored advertising directly to the 

smartphone and offer a lot of added value for the customer. For example, it could be a 

coupon or a custom-fit offer. Back from the journey, the airport app helps passengers 

to find back to their car or public transportation. Business travelers have all 

information concerning their flight and their boarding pass in their pocket and can 

quickly find a place to work and relax. 
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Figure 1.4 Location based services and indoor navigation in airport 

 

  1.1.4.3 Advantages for stores and restaurants 

                            Merchants can push custom-fit offers directly to the 

smartphone of interested clients: For example, those who have already visited this or 

similar shops. And for sure everyone is delighted by a discount of his favorite shop. In 

addition, you learn a lot about visitor flows in or nearby the store. Large shops can 

also use the technique for asset tracking, for example in order to improve theft 

protection or logistics. 

 

 1.1.5 Indoor navigation and location-based services for trade fairs 

  1.1.5.1 Trade fair solutions 

      Have you ever wandered through an exhibition, studying a 

heavy catalogue, looking for interesting exhibitors or for a cash machine, the 

wardrobe, Perhaps you as an exhibitor had too little or not so interested visitors at 

exhibition stand. Or perhaps you are a trade fair organizer who wants to assist 

exhibitors and visitors to take full advantage of their trade fair participation. Modern 

indoor navigation solutions can solve these problems. A cross-channel trade fair 

solution provides added value to trade show organizers, exhibitors and visitors, as 

shown in Figure 1.5. 
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  1.1.5.2 Advantages for trade show organizers 

                            The aim of a trade show organizer is to create an attractive 

event both for visitors and exhibitors. A trade fair application makes information 

about exhibitors, services, public transport and framework programmed available to 

visitors. Personalized content matches the right visitors and exhibitors. With Location 

Analytics you can analyze visitor flows. During and after the event you can get 

precise information about hot spots and the number of people in a certain hall or at a 

stand. The tool also gives you advice on how to optimize routes, for example when 

they are overcrowded. Exhibitors can sponsor the app and thereby co-finance it 

 

  1.1.5.3 Advantages for exhibitors 

                            Of course, exhibitors have the possibility to present 

themselves on the map of the area in the trade fair app, including pictures, contact 

data and description. Furthermore, they can use location-based marketing in order to 

get the attention of the matching visitors. The analysis of visitor flows makes it 

possible to choose the best stand position. 

 

 

 

Figure 1.5 Indoor navigation and location-based services for trade fairs 

 

 1.1.6 Indoor navigation and location-based services for office and industry 

  1.1.6.1 Indoor positioning in office buildings and industry areas 

                           Indoor positioning and indoor navigation can make the 

management of large offices and industry buildings a lot easier and employees can 
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also benefit from it. For example, can track assets or people, support the security 

service and offer  staff an employee app, as shown in Figure 1.6. 

 

  1.1.6.2 Benefits from asset- and staff tracking 

                          Assumed that company site includes a large warehouse, can 

determine the location of pallets or vehicles by the means of indoor positioning with 

an accuracy of less than a meter. The position can be displayed for example in an app 

or web-based platform. It also works with very high storage depots with several 

levels. It is possible to automatically send a message to the security service when 

goods leave a defined area. These functions can also be applied to staff and external 

companies. Both can be integrated in an operation control system, in order to delegate 

tasks. 

 

  1.1.6.3 Advantages for employees 

                           An employee app facilitates work and social contacts for the 

staff working in large buildings. For example, the application can show them the way 

to offices and meeting rooms. Can even directly book them. By means of the buddy 

finder colleagues can exchange their positions and meet up for lunch or an 

appointment. Further useful and time-saving information which can be included are 

opening hours and dishes offered by the canteen, departure times of public transport 

and the position of the employee’s car. 

 

 

 

Figure 1.6 Indoor positioning in office buildings and industry areas 
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1.2 Thesis Outline 

 1.2.1 Motivation 

            Coordinate positioning is significant to life facilitation in the modern 

era. Nowadays, outdoor positioning is possible by the use of acceptable devices such 

as GPS (Global Positioning System), which leads to multiple benefits, e.g., 

navigation, positioning for easy reference, and local based services. They are useful 

and bring more convenience to life. On the contrary, indoor positioning is currently 

not efficient enough for its accuracy and simplicity due to interference as well as 

diffraction caused by indoor environments. A positioning device like GPS cannot be 

manipulated indoor, because signals between GPS receivers and satellites are blocked 

by building walls. Several indoor positioning approaches, therefore, are designed to 

eliminate such problem.  

  The researcher works at Tritech Engineering Co., Ltd., a construction 

project and AGV auto parts company for industrial plants. So, the researcher realizes 

a key problem of AGV cars. To clarify, every time when AGV cars are ordered for 

purchase, a magnetic stripe reader must be installed in the cars as a driving navigator. 

The cars move on right directions up to the magnetic stripe reader that detects 

directions/routes from the magnetic stripe installed on the plant floor. The problem 

found is that after the magnetic stripe is used for a period of time, it will wear out. As 

a consequence, there are frequent purchase orders for the new ones. And before a new 

one is installed, the old one must be removed. Therefore, this is not only about too 

frequent replacement of the magnetic stripe but also the waste of time and installation 

payment every time when such problem occurs. It leads to the discontinuity of 

manufacturing processes in industrial plants as it has to wait until the installation or 

the replacement is finished. This problem inspired the researcher to invent and 

develop an indoor wireless positioning system as solution of the traditional navigation 

system of AGV cars.  

  This thesis presents received signal strength indication (RSSI) for 

signal transmission by Lora Technology of wireless devices. A Lora receiver is 

introduced for signal strength measurement. Data processing is conducted for indoor 

positioning. To implement the test, the LoRa transmitters are installed in the 4 corners 

of a rectangular building. After that the LoRa receiver is relocated and placed over the 
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different tested coordinates as set in order to obtain RSSI from the 4 LoRa 

transmitters. Then, RSSI data is processed by a designed ANN model (Artificial 

Neural Networks) with back-propagation learning algorithm. Supervised learning is 

imitated for the model design. The model will be applied to the processing afterwards 

for indoor object or wireless device positioning. 

 

 1.2.2 Purposes 

  The current wireless indoor positioning system have discrepancies 

more than 1 meter. 

 

 1.2.3 Objective 

  Design an indoor object positioning system by LoRa Technology. 

 

 1.2.4 Research Scopes  

  1.2.4.1 Design an indoor object positioning system by LoRa 

Technology.  

  1.2.4.2 Use ANN technique (Artificial Neural Networks) for object 

positioning inside a large product storage building.   

  1.2.4.3 LoRa transmitters for the test. 

  1.2.4.4 LoRa receiver for the test. 

 

 1.2.5 Expected Outcomes 

  Indoor positioning system by LoRa Technology. 

                 

 1.2.6 Research Plan 

                 The research schedules in Jun 2017 until July 2018. 
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Table 1.1 Research Plan 

Research Methodology 

Year 

 2017 2018 

6 7 8 9 10 11 12 1 2 3 4 5 6 7

1. A preliminary study on the 

Indoor localization system. 
                          

  

2. Study of the structure of 

indoor localization and 

communication system. 

        

      

            

  

3. Design and Create of indoor 

localization system. 
                          

  

4. Experimental and 

improvement of the indoor 

localization system. 

                    

        

5. Analysis and summary of 

the experimental result 

including the conclusion. 

                

  

        

  

6. Summary of research and 

presentation. 
                          

  

 

 1.2.7 Keyword Descriptions 

  1.2.7.1 Indoor Localization 

                          An indoor positioning system (IPS) is a system to locate 

objects or people inside a building using lights, radio waves, magnetic fields, acoustic 

signals, or other sensory information collected by mobile devices. There are several 

commercial systems on the market, but there is no standard for an IPS system. 

 

  1.2.7.2 LoRa Technology 

                          LoRa is a 'Long Range' low power wireless standard intended 

for providing a cellular style low data rate communications network. LoRa is ideal for 

providing intermittent low data rate connectivity over significant distances. The radio 
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interface has been designed to enable extremely low signal levels to be received, and 

as a result even low power transmissions can be received at significant ranges. The 

LoRa modulation and radio interface has been designed and optimized to provide 

exactly the type of communications needed for remote IoT and M2M nodes. 

 

  1.2.7.3 Received Signal Strength Indication 

                          RSSI, or “Received Signal Strength Indicator”, is a measurement 

of how well device can hear a signal from an access point or router. It’s a value that is 

useful for determining if you have enough signal to get a good wireless connection. 

 

  1.2.7.4 Artificial Neural Network 

                          An artificial neuron network (ANN) is a computational model 

based on the structure and functions of biological neural networks. Information that 

flows through the network affects the structure of the ANN because a neural network 

changes - or learns, in a sense - based on that input and output. ANNs are considered 

nonlinear statistical data modeling tools where the complex relationships between 

inputs and outputs are modeled or patterns are found. ANN is also known as a neural 

network. 
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Chapter 2 

Related Theories and Literature Reviews 

 

2.1 Related Theories 

       2.1.1  LoRaWAN Technology 

                 LoRaWAN™ defines the communication protocol and system 

architecture for the network while the LoRa® physical layer enables the long-range 

communication link. The protocol and network architecture have the most influence 

in determining the battery lifetime of a node, the network capacity, the quality of 

service, the security, and the variety of applications served by the network as can be 

seen in Figure 2.1. 

                

  2.1.1.1  Network Architecture 

                            Many existing deployed networks utilize a mesh network 

architecture. In a mesh network, the individual end-nodes forward the information of 

other nodes to increase the communication range and cell size of the network. While 

this increases the range, it also adds complexity, reduces network capacity, and 

reduces battery lifetime as nodes receive and forward information from other nodes 

that is likely irrelevant for them. Long range star architecture makes the most sense 

for preserving battery lifetime when long-range connectivity can be achieved as can 

be seen in Figure 2.2. 

                            In a LoRaWAN™ network nodes are not associated with a 

specific gateway. Instead, data transmitted by a node is typically received by multiple 

gateways. Each gateway will forward the received packet from the end-node to the 

cloud-based network server via some backhaul (either cellular, Ethernet, satellite, or 

Wi-Fi). The intelligence and complexity are pushed to the network server, which 

manages the network and will filter redundant received packets, perform security 

checks, schedule acknowledgments through the optimal gateway, and perform 

adaptive data rate, etc. If a node is mobile or moving there is no handover needed 

from gateway to gateway, which is a critical feature to enable asset tracking 

applications–a major target application vertical for IoT. 
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Figure 2.1 Built on the LoRa PHY, the LoRaWAN media access control (MAC) 

defines the message formats for different device classes 

 

 

 

Figure 2.2 The LoRa network architecture 

 

                            A typical LoRa network is “a star-of-stars topology”, which 

includes three different types of devices, as shown in Figure 2.3. 

                            The basic architecture of a LoRaWAN network is as follows: 

end-devices communicate with gateways using LoRa with LoRaWAN. Gateways 

forward raw LoRaWAN frames from devices to a network server over a backhaul 

interface with a higher throughput, typically Ethernet or 3G. Consequently, gateways 

are only bidirectional relays, or protocol converters, with the network server being 

responsible for decoding the packets sent by the devices and generating the packets 
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that should be sent back to the devices. There are three classes of LoRa end-devices, 

which differ only with regards to the downlink scheduling. A Study of LoRa: Long 

Range & Low Power Networks for the Internet of Things. 

 

 

 

Figure 2.3 The basic architecture of a LoRaWAN network 

 

 

 

Figure 2.4. Visualization of the up-chirps used in the LoRa modulation 
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  2.1.1.2 Modulation 

                            The key enabling factor in the LoRa modulation standard. 

The LoRa modulation uses a proprietary Chirp Spread Spectrum (CSS) scheme, 

which creates wideband linear frequency modulated chirps. The chip rate of these 

chirps are equal to the spectral bandwidth of the signal and uses 125, 250 or 500 kHz 

of bandwidth. The gains of using CSS are twofold, the first being that chirps are noise 

resistant and the second that these chirps can be generated with high precision using a 

cheap crystal, which leads to low chip costs. Because of the relative broadband 

characteristics of the chirps, multi-path fading is typically not an issue [4]. Doppler 

spread causes a frequency shift, which also only have a small effect on the channel 

thanks to the time-varying frequency of the chirps. as shown in Figure 2.4. 

                            The frequency increases as a linear function of time using the 

LoRa modulation, 15 km of range can be achieved in urban environment and up to 

30 km with good line-of-sight. Additionally, LoRa uses a Frequency-Hopping 

Spread Spectrum (FHSS) scheme to switch frequency between available channels 

according to a pseudo-random distribution. This helps to further mitigate interference. 

                            A key thing to note with the CSS modulation scheme is that it 

produces a very sharp peak when auto-correlated, and has previously been deployed 

in radar applications [5]. The high peak helps to identify the correct time that the 

signal is received, and thus can be used to give a good estimate of the time it takes for 

a transmission to travel between two nodes. 

 

  2.1.1.3  Network Capacity 

                            In order to make a long-range star network viable, the gateway 

must have a very high capacity or capability to receive messages from a very high 

volume of nodes. High network capacity in a LoRaWAN™ network is achieved by 

utilizing adaptive data rate and by using a multichannel multi-modem transceiver in 

the gateway so that simultaneous messages on multiple channels can be received. The 

critical factors effecting capacity are the number of concurrent channels, data rate 

(time on air), the payload length, and how often nodes transmit. Since LoRa is a 

spread spectrum-based modulation, the signals are practically orthogonal to each 
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other when different spreading factors are utilized. As the spreading factor changes, 

the effective data rate also changes. The gateway takes advantage of this property by 

being able to receive multiple different data rates on the same channel at the same 

time. 

                

  2.1.1.4 Device Classes 

                            End-devices serve different applications and have different 

requirements. In order to optimize a variety of end application profiles, LoRaWAN™ 

utilizes different device classes. The device classes trade off network downlink 

communication latency versus battery lifetime. In a control or actuator-type 

application, the downlink communication latency is an important factor as can be seen 

in Figure 2.5. 

                            Bi-directional end-devices (Class A): End-devices of Class A 

allow for bi-directional communications whereby each end-device’s uplink transmission is 

followed by two short downlinks receive windows. The transmission slot scheduled 

by the end-device is based on its own communication needs with a small variation 

based on a random time basis (ALOHA-type of protocol). This Class A operation is 

the lowest power end-device system for applications that only require downlink 

communication from the server shortly after the end-device has sent an uplink 

transmission. Downlink communications from the server at any other time will have 

to wait until the next scheduled uplink. 

 

 

 

Figure 2.5 Device class of LoRa 
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Figure 2.6 LoRaWAN communication profiles classes 

 

                            Bi-directional end-devices with scheduled receive slots (Class 

B): In addition to the Class A random receive windows, Class B devices open extra 

receive windows at scheduled times. In order for the end-device to open it receive 

window at the scheduled time, it receives a time-synchronized beacon from the 

gateway. This allows the server to know when the end-device is listening as can be 

seen in Figure 2.6.  

                            Bi-directional end-devices with maximal receive slots (Class 

C): End-devices of Class C have almost continuously open receive windows, only 

closed when transmitting. 

                            Three different classes (A, B, C) of communication profiles 

are available in LoRa networks between devices and applications. Each class serves 

different application needs and has optimized requirements for specific purposes. The 

key difference between A, B and C profiles is the trade-off made between latency and 

power consumption. 

  Class A  

  The below figure illustrates default configuration in LoRaWAN 

standard in SF12. Values can be adjusted. 
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Figure 2.7 Class A default configuration profile 

                       

  Class A devices implement a bi-directional communication profile 

whereby each end-device’s uplink transmission is followed by two short downlinks 

receive windows. The transmission slot scheduled by the end-device is based on its 

own communication needs with a small variation based on a random time basis. This 

Class A operation is the lowest power consuming option for applications that only 

require downlink communication from the server shortly after the end-device has sent 

an uplink transmission. Downlink communications from the server at any other time 

has to wait until the next scheduled uplink. Class A covers the vast majority of use 

cases, and is the most power efficient mode of LoRa as can be seen in Figure 2.7. 

  Class B  

                The below figure illustrates default configuration in LoRaWAN 

standard in SF12. Values can be adjusted. 

     Devices should implement a Class B communication profile when 

there is a requirement to ensure low latency of downlink communication, while 

keeping the power consumption as low as possible. Class B emulates a continuously 

receiving device by opening receive windows at fixed time intervals for the purpose 

of enabling server-initiated downlink messages. 

    LoRaWAN Class B option adds a synchronized reception window on 

the remote device. Class B is achieved by having the gateway send a beacon on a 

regular basis to synchronize all the end-point devices in the network. It allows devices 
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to open a short extra reception window (called “ping slot”) at a predictable time 

during a periodic time slot. 

    Class B is currently still in experimental status at the LoRa alliance, 

but most use cases can already be covered by combination of class A and class C. For 

example, devices requiring periodic rendezvous points to receive configuration data 

(e.g. room reservation display) may periodically request time from the LPWA 

network, then synchronize their internal clock and periodically open rendezvous 

windows for downlink messages as can be seen in Figure 2.8. 

 

 

 

Figure 2.8 Class B default configuration profile 

 

 

 

Figure 2.9 Class C default configuration profile 

 

  Class C   

    The below figure illustrates default configuration in LoRaWAN 

standard in SF12. Values can be adjusted. 
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  Devices implementing Class C communication profiles are used for 

applications that have sufficient power available and thus do not need to minimize 

reception time windows. This is the case of most actuators (smart plugs, remote 

control of powered devices, etc.). Class C devices will listen with RX2 windows 

parameters as often as possible. The device listens on RX2 when it is not either (a) 

sending or (b) receiving on RX1, according to Class A definition. To do so, it will 

open a short window on RX2 parameters between the end of the uplink transmission 

and the beginning of the RX1 reception window and it will switch to RX2 reception 

parameters as soon as the RX1 reception window is closed; the RX2 reception 

window will remain open until the end-device has to send another message as can be 

seen in Figure 2.9. 

 

  2.1.1.5  Security  

                          It is extremely important for any LPWAN to incorporate 

security. LoRaWAN™ utilizes two layers of security: one for the network and one for 

the application. The network security ensures authenticity of the node in the network 

while the application layer of security ensures the network operator does not have 

access to the end user’s application data. AES encryption is used with the key 

exchange utilizing an IEEE EUI64 identifier. There are trade-offs in every technology 

choice but the LoRaWAN™ features in network architecture, device classes, security, 

scalability for capacity, and optimization for mobility address the widest variety of 

potential IoT applications. 

 

  2.1.1.6  Battery Lifetime 

   The nodes in a LoRaWAN™ network are asynchronous and 

communicate when they have data ready to send whether event-driven or scheduled. 

This type of protocol is typically referred to as the Aloha method. In a mesh network 

or with a synchronous network, such  as cellular, the nodes frequently have to ‘wake 

up’ to synchronize with the network and check for messages. This synchronization 

consumes significant energy and is the number one driver of battery lifetime 

reduction. In a recent study and comparison done by GSMA of the various 
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technologies addressing the LPWAN space, LoRaWAN™ showed a 3 to 5 times 

advantage compared to all other technology options. 

 

  2.1.1.7  Microcontroller 

                          The Arduino Uno is a microcontroller board based on the 

ATmega328. It has 14 digital input/output pins, 6 analog inputs, a 16 MHz ceramic 

resonator, a USB connection, a power jack, an ICSP header, and a reset button. It 

contains everything needed to support the microcontroller; simply connect it to a 

computer with a USB cable or power it with a AC-to-DC adapter or battery to get 

started. The Uno differs from all preceding boards in that it does not use the FTDI 

USB-to-serial driver chip. Instead, it features the Atmega16U2 (Atmega8U2 up to 

version R2) programmed as a USB-to-serial converter as can be seen in Figure 2.10, 

Figure 2.11and Figure 2.12. 

                          

 

 

Figure 2.10 Arduino Uno board 

 

Table 2.1 Arduino Uno Board Specification  

Microcontroller  ATmega328 

Operating Voltage  5V 

Input Voltage (recommended) 7-12V 

Input Voltage (limits)  6-20V 

Digital I/O Pins  14 (of which 6 provide PWM output) 

Analog Input Pins  6 
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Table 2.1 Arduino Uno Board Specification (Continued) 

DC Current per I/O Pin  40 mA 

DC Current for 3.3V Pin  50 mA 

Flash Memory  

32 KB (ATmega328) of which 0.5 KB used by 

bootloader 

SRAM  2 KB (ATmega328) 

EEPROM  1 KB (ATmega328) 

Clock Speed  16 MHz 

 

. 

Figure 2.11 Schematic & Reference Design of Arduino Uno board 
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Figure 2.12 Atmega 168 pin mapping 

 

        2.1.1.8  Dipole Antenna and Radiation Pattern 

                    A dipole antenna is a radio antenna that can be made of a 

simple wire, with a center fed driven element. It consists of two metal wire-rod 

conductors, in line with each other, with a small space between them. The radio 

frequency voltage is applied to the antenna at the center, between the two conductors. 

These antennas are the simplest practical antennas from a theoretical point of view. 

                   The half-wave dipole antenna is the basis of many other 

antennas and is also used as a reference antenna for the measurement of antenna gain 

and radiated antenna density. At the frequency of resonance, i.e. at the frequency at 

which the length of the dipole equals a half-wavelength, we have a minimum voltage 

and a maximum current at the termination in the center of the antenna, as shown in 

Figure 2.13. The impedance is minimal. This is a simple antenna that radiates its 

energy out toward the horizon (perpendicular to the antenna). The resulting 3D 

pattern looks kind of like a donut or a bagel with the antenna sitting in the hole and 

radiating energy outward as can be seen in Figure 2.14. The strongest energy is 

radiated in the plane perpendicular to the antenna. The gain of the half-dipole is 

approximately 2.2 dBi. 
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Figure 2.13 Half-wave dipole antenna voltage and current distribution 

 

 

 

Figure 2.14 Half-wave dipole antenna model and radiation patterns 

 

         When the frequency is quite low, the wavelength becomes 

very long, so the half-wave dipole antenna is unpracticable. In this case a short dipole 

antenna can be used. The short dipole antenna is the simplest of all the antennas. It is 

an open circuited wire fed at its center. The word short always implies relative to a 

wavelength. So, the absolute size of the above dipole antenna does not matter, only 

the size of the wire relative to the wavelength of the frequency of the operation is 

important. Typically, a dipole is short if its length is less than a tenth of a wavelength. 

The directivity of the center fed short dipole antenna depends only on the sin of the 

polar angle component. It is calculated to be 1.76 dB, which is very low for realizable 

antennas. The polarization of the short dipole antenna is linear, as for all dipole type 

antennas. When evaluated in the x-y plane, this antenna is described as vertically 

polarized, because the Enfield is vertically oriented as can be seen in Figure 2.14. 
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  2.1.1.9  Protocols 

                    LoRaWAN is a MAC protocol, built to use the LoRa 

physical layer. It is designed mainly for sensor networks, wherein sensors exchange 

packets with the server with a low data rate and relatively long-time intervals (one 

transmission per hour or even days). This section describes the LoRaWAN V1.0 

specification, as released in January 2015. 

                    Components of a LoRaWAN Network Several components of 

the network are defined in the LoRaWAN specification and are required to form a 

LoRaWAN network: end-devices, gateways and the network server. 

                   End-device: the low-power consumption sensors that 

communicate with gateways using LoRa. 

                    Gateway: the intermediate devices that forward packets 

coming from end-devices to a network server over an IP backhaul interface allowing a 

bigger throughput, such as Ethernet or 3G. There can be multiple gateways in a 

LoRa deployment, and the same data packet can be received by more than one 

gateway. 

                    Network server: responsible for de-duplicating and decoding 

the packets sent by the devices and generating the packets that should be sent back to 

the devices. 

                    Unlike traditional cellular networks, the end-devices are not 

associated with a particular gateway in order to have access to the network. The 

gateways serve simply as a link layer relay and forward the packet received from the 

end-devices to the network server after adding information regarding the reception 

quality. Thus, an end-device is associated with a network server, which is responsible 

for detecting duplicate packets, choosing the appropriate gateway for sending a reply 

(if any), consequently for sending back packets to the end-devices. Logically, 

gateways are transparent to the end-devices. 

    A LoRa frame begins with a preamble. The preamble starts 

with a sequence of constant upchirps that cover the whole frequency band. The last 

two upchirps encode the sync word. The sync word is a one-byte value that is used to 

differentiate LoRa networks that use the same frequency bands. A device configured 
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with a given sync word will stop listening to a transmission if the decoded sync word 

does not match its configuration. The sync word is followed by two and a quarter 

downchirps, for a duration of 2.25 symbols. The total duration of this preamble can be 

configured between 10.25 and 65,539.25 symbols. The structure of the preamble can 

be seen in Figure 2.15. 

                   After the preamble, there is an optional header. When it is 

present, this header is transmitted with a code rate of 4/8. This indicates the size of the 

payload, the code rate used for the end of the transmission and whether or not a 16-bit 

CRCfor the payload is present at the end of the frame. The header also includes a 

CRC to allow the receiver to discard packets with invalid headers. The payload size is 

stored using one byte, limiting the size of the payload to 255 bytes. The header is 

optional to allow disabling it in situations where it is not necessary, for instance when 

the payload length, coding rate and CRC presence are known in advance. The payload 

is sent after the header, and at the end of the frame is the optional CRC. A schematic 

summarizing the frame format can be seen in Figure 2.16. 

 

 

 

Figure 2.15 Frequency variation over time of a sample signal emitted by a LoRa 

transmitter 
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Preamble 

 
Header 

(optional) 

 
Payload 

 
Payload CRC

(optional) 

 

     CR = 4/8        CR = 4 / (4+n) 

 

Figure 2.16 Structure of a LoRa frame 

 

   Equation (1), derived from Semtech’s datasheets [6,7,8], gives 

the number of symbols required to transmit a payload ns, as a function of all of these 

parameters. This number should be added to the number of symbols of the preamble, 

in order to compute the total size of the packet in symbols. In this equation, PL is the 

payload size in bytes, CRC is 16 if the CRC is enabled and zero otherwise, H is 20 

when the header is enabled and zero otherwise and DE is two when the low data rate 

optimization is enabled and zero otherwise. This equation also shows that the 

minimum size of a packet is eight symbols. 

 

   nୱ 	ൌ 8 ൅max ቀቒ଼୔୐ିସୗ୊ା଼ାୈୋୌ
ସ	ൈ	ሺୗ୊ିୈ୉ሻ

ቓ ൈ ସ

ୈ	
	 ,0ቁ           (2.1) 

 

                  The header and CRC are mandatory for uplink messages, 

which makes it impossible to use a spreading factor of six in LoRaWAN. Downlink 

messages have the header, but not the CRC. The code rate that should be used is not 

specified and neither is when the end-devices should use the low data rate 

optimization.  

                  The message format is detailed in Figure 2.17. DevAddr is the 

short address of the device. FPort is a multiplexing port field. The value zero means 

that the payload contains only MAC commands. When this is the case, the FOptsLen 

field must be zero. FCnt is a frame counter. MIC is a cryptographic message integrity 

code, computed over the fields MHDR, FHDR, FPort and the encrypted 

FRMPayload. MType is the message type, indicating among other things whether it is 

an uplink or a downlink message and whether or not it is a confirmed message. 

Acknowledgments are requested for confirmed messages. Major is the LoRaWAN 
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version; currently, only a value of zero is valid. ADR and ADRAckReq control the 

data rate adaptation mechanism by the network server. ACK acknowledges the last 

received frame. FPending indicates that the network server has additional data to send 

and that the end-device should send another frame as soon as possible so that it opens 

receive windows. FOptsLen is the length of the FOpts field in bytes. FOpts is used to 

piggyback MAC commands on a data message. CID is the MAC command identifier, 

and Args are the optional arguments of the command. FRMPayload is the payload, 

which is encrypted using AES with a key length of 128 bits. The minimal size of the 

MAC header is 13 bytes; its maximal size is 28 bytes. Knowing this, it is possible to 

compute the maximum channel capacity available for application data payloads with  

 

 

 

Figure 2.17 LoRaWAN frame format. The sizes of the fields are in bits 

 

given modulation parameters thanks to Equations (1). As packets are sent from a 

device to the network server and vice versa, there is no destination address on uplink 

packets, and there is no source address on downlink packets. 

                  LoRaWAN MAC Commands LoRaWAN defines many MAC 

commands that allow customizing end-device parameters [9]. One of them, 

LinkCheckReq, can be sent by an end-device to test its connectivity. All of the others 

are sent by the network server. These commands can control the data rate and output 

power used by the device, as well as the number of times each unconfirmed packet 
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should be sent, the global duty cycle of the device, changing parameters of the receive 

windows  and changing the channels used by the device. One command is used to 

query the battery level and reception quality of a device. 

 

      2.1.1.10 Technical Comparisons 

                    Table 2 that the cellular-based indoor localization relies on 

the mobile cellular network, remarkably the wireless telephone technology Global 

System Mobile (GSM) communication. Such cellular-based system generally 

estimates mobile user position in building with low accuracy, but power consumption 

is relatively high and the signal strength is based on a cell site under the main 

infrastructure. Consequently, indoor localization based on cellular network has 

received less attention than those of non-cellular based systems. 

                    It is also seen in Table 1 that the Radio Frequency 

Identification (FID), which operates at a frequency 13.6 MHz, has been recognized as 

one of a potential technology for locating objects or people. RFID typically enables a 

one-way communication via noncontact and advanced automatic identification 

through radio signals. RFID consumes low power, and has widely been utilized a 

wide range of applications such as automobile assembly industry, warehouse 

management, supply chain network. However, RFID provides low data transfer rate 

and operates in a short range lower than one meter, a number of RFID tags is required 

and a complicated network is ultimately required to be designed properly. 

Alternatively, Bluetooth, Wi-Fi, and ZigBee technologies that operate at 2.4 GHz 

with different protocols have also been utilized for indoor localization.   

                    Bluetooth offers information exchange between devices with 

high security, low cost, low power, and small size. However, device discovery 

procedure is reiterated in each location finding, resulting in the increase in 

localization latency and power consumption and leading unsuitable for real-time 

operations. The Wi-Fi-Based localization system is one of the most widespread 

approaches for indoor localization due to the fact that Wi-Fi is embedded in most 

mobile devices without installing extra software or manipulating the hardware. 

                    The drawback of Wi-Fi-Based localization system is reliance 

on Wi-Fi location in building and signal attenuation caused by the static environment 
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or movement of furniture and doors, resulting in low-accuracy localization. ZigBee is 

another wireless technology standard which provides short and medium range 

communications with low-power consumption but do not require large data 

throughput. Although it is possible for a communication distance of 100 m. for Line-

of-Sight operation, the coverage range for in indoor environments could possibly be 

only 20m -30m due to obstacles in static indoor environment. As ZigBee operates in 

the unlicensed ISM bands, it is therefore relatively vulnerable to interference from a 

wide range of signal types using the same frequency which can disrupt radio 

communications. In summary, several techniques for the enhancement of indoor 

localization based on such Bluetooth, Wi-Fi, and ZigBee technologies have been 

proposed in order to increase accuracy and precision, coverage and resolution, 

latency, and effects of random errors caused by signal interference and reflections [8]. 

As a consequence, a hybrid positioning system, which is defined as systems for 

determining the location by combining several different wireless technologies, have 

been suggested as an alternative solution for indoor localization quality enhancement 

[9].  

 

Table 2.2 Comparisons of Technical Specifications on Rf-Based Communication 

Technology for Indoor Localization  

Specifications (i) Cellular 

Communications 

(ii) Non-Cellular (Ad-Hoc and Peer-to-Peer Communications) 

RFID Bluetooth Wi-Fi ZigBee UWB LoRa 

1. Standard GSM/GPRS 
IEEE 

802.15.1 

IEEE 

802.15.1 
IEEE 802.11n 

IEEE 

802.15.4 

IEEE 

802.15.6 
LoRaWAN 

2. Operating  

    Frequency 
900/1800 MHz 13.56 MHz 2.4 GHz 2.4/5 GHz 2.4 GHz 

3.1GHz-

10.6GHz 

430/433/ 

868/915 

MHz 

3. Maximum    

    Distance 
30km (LR) 1m (SR) 30m (MR) 50m (MR) 100m (MR) 10m (SR) 

5km(UA), 

15km(SA), 

(LR) 

4. Data Rate  

    Transfer 

10 Mbps 

(High) 

50 Mbps 

(Low) 

1-3 Mbps 

(Medium) 

54 Mbps 

(High) 

250 kbps 

(Low) 

55-410 Mbps 

(High) 

50 kbps 

(Low) 

5. Transmission  

    Current (mA) 

500-1000 mA 

(High) 

15 mA 

(Low) 

35 mA 

(Low) 

238 mA 

(High) 

32 mA 

(Low) 

55 c mA 

(Medium) 

25 mA 

(Low) 

6. Operation Time 

    2000-mAh    

    Battery 

2-4 Hr. (SOT) 
133 Hr.  

(LOT) 

57 Hr.   

(LOT) 

8.4 Hr.  

(SOT) 
62 Hr.  (LOT) 36 Hr. (LOT) 

80 Hr. 

(LOT) 
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Table 2.3 Summary of LoRa Communication Performance Configuration in Fine-

Tune Physical Layer  

Configurable Setting Values Effects 

1. Bandwidth 125…500 kHz 

Higher bandwidths allow for transmitting packets at 

higher data rates (1 kHz = 1 kbps), but reduce receiver 

sensitivity and communication range. 

2. Spreading Factor 
Symbol

Chips
...22 126  

Bigger spreading factors increase the signal-to-noise 

ratio and hence radio sensitivity, augmenting the 

communication range at the cost of longer packets and 

hence a higher energy expenditure. 

3. Coding Rate 4/5…4/8  

Larger coding rate increase the resilience to 

interference bursts and decoding error at the cost of 

longer packets and higher energy expenditure. 

4. Transmission 

Power 
-4…20 dBm 

Higher transmission powers reduce the signal-to-noise 

ratio at the cost of an increase in the energy 

consumption of the transmitter. 

 

 Recently, LoRa, which stands for “Long Range”, is a promising long-range 

wireless communications system, fostered by the LoRa Alliance [10]. LoRa has 

been designed as a long-lived battery-powered device, where the energy consumption 

is of paramount importance. Typically, LoRa can be distinctly classified into two 

layers: (i) a physical layer using the Chirp Spread Spectrum (CSS) radio modulation 

technique and (ii) a MAC layer protocol (LoRaWAN). The LoRa physical layer, 

developed by Semtech, allows for long-range, low-power and low-throughput 

communications. It operates on the 433-, 868- or 915-MHz ISM bands, depending on 

the region in which it is deployed. The payload of each transmission can range from 

2–255 octets, and the data rate can reach up to 50 Kbps when channel aggregation is 

employed. The modulation technique is a proprietary technology from Semtech. 

LoRaWAN provides a medium access control mechanism, enabling many end-

devices to communicate with a gateway using the LoRa modulation. While the 

LoRa modulation is proprietary, the LoRaWAN is an open standard being developed 

by the LoRa Alliance. 
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     2.1.2  Indoor Localization Methods   

               2.1.2.1  Indoor Positioning Fundamentals 

                          Prior to the development of modern positioning technology, 

various physical “signs” were used to obtain position information. An animal in a 

forest might leave an odor marking, for example, for use in recognizing an 

approximate location later on. It has long been common for man to use the positions 

of stars and the earth’s magnetic field in order to establish directions and thereby 

estimate their locations. The evolution of such “signs” is an important driving force in 

the development of positioning technology. GPS using Radio Frequency (RF) 

technology have achieved great success for outdoor localization. Precise inertial 

measurement devices, such as accelerometers and gyroscopes, allow missile and 

airplanes to localize themselves and navigate accurately. Indoors, wireless 

information access is now widely available, including RF signals, light and sound 

waves, etc., which can be explored to make location estimates in indoor 

environments. Micro-Electro-Mechanical System (MEMS) inertial sensors are today 

incorporated into tiny chips that can be integrated into the smart devices that are so 

popular nowadays. The main driving force behind these developments is the 

advancement in technologies such as wireless communication and miniature 

electronics allowing a panoply of exciting developments within the last decade. 

                          Location estimation techniques differ Enormously depending 

on the kind of technologies used and measurements made. The major location 

estimation algorithm types are: triangulation, proximity, fingerprinting, and dead 

reckoning; while possible measured quantities include time of flight (TOF), angle of 

arrival (AOA), RSS, link quality, sensor readings, and the like. Many challenges are 

still to be faced in the adaptation of these technologies for particular situations. ANN 

algorithms have their unique advantages and disadvantages for particular application 

scenarios. This leads to suppose that combining more than one type of complementary 

positioning technique could provide better performance, which is, of course, what is 

actually observed in most modern localization systems. 

                          Better performance is the constant pursuit of the thesis, and is 

also an urgent need for many location-based applications and services, particularly for 

indoor applications. Accuracy might be the most important performance indicator of 
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such a system, while meanwhile other parameters, such as coverage, complexity, 

robustness and cost also need to be considered. Indoor and outdoor environments are 

of course fundamentally deferent, which influences in a crucial way the adoption of 

particular localization solutions for indoor environments. 

 

  2.1.2.2  Received Signal Strength Indication (RSSI)   

                          Equation (2), The received signal strength (RSS) based 

approach is one of the simplest and widely used approaches for indoor localization 

[10] – [14]. The RSS is the actual signal power strength received at the receiver, 

usually measured in decibel-milliwatts (dBm) or milliwatts (mW). The RSS can be 

used to estimate the distance between a transmitter (Tx) and a receiver (Rx) device; 

the higher the RSS value the smaller the distance between Tx and Rx. The absolute 

distance can be estimated using a number of different signal propagation models 

given that the transmission power or the power at a reference point is known. RSSI 

(which is often confused with RSS) is the RSS indicator, a relative measurement of 

the RSS that has arbitrary units and is mostly defined by each chip vendor. For 

instance, the Atheros Wi-Fi chipset uses RSSI values between 0 and 60, while Cisco 

uses a range between 0 and 100. Using the RSSI and a simple path-loss propagation 

model [15], the distance d between Tx and Rx can be estimated from (2.2) as 

 

RSSI = -10n log10(d) + A                                              (2.2) 

 

where n is the path loss exponent (which varies from 2 in free space to 4 in indoor 

environments) and A is the RSSI value at a reference distance from the receiver.  RSS 

based localization, in the DBL case, requires trilateration or N-point literation, i.e., the 

RSS at the device is used to estimate the absolute distance between the user device 

and at least three reference points; then basic geometry/trigonometry is applied for the 

user device to obtain its location relative to the reference points as shown in Figure 

2.18. In a similar manner, in the MBL case, the RSS at the reference points is used to 

obtain the position of the user device. In the latter case, a central controller or ad-hoc 

communication between anchor points is needed for the total RSS collection and 

processing. On the other hand, RSS based proximity-based services (such as sending 
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marketing alerts to a user when in the vicinity of a retail store), require a single 

reference node to create a geofence 3 and estimate the proximity of the user to the 

anchor node using the path loss estimated distance from the reference point. 

 

 

 

Figure 2.18 RSSI based localization 

 

               While the RSS based approach is simple and cost efficient, it 

suffers from poor localization accuracy (especially in non-line of-sight conditions) 

due to additional signal attenuation resulting from transmission through walls and 

other big obstacles and severe RSS fluctuation due to multipath fading and indoor 

noise [10], [16]. Different filters or averaging mechanisms can be used to mitigate 

these effects. However, it is unlikely to obtain high localization. 

 

              2.1.2.3  Time of Arrival 

                          Time of Arrival is the process of determining distance from 

the time a transmission takes from anchor node to target node. In theory this is a 

straight forward procedure since the speed of light is well known. The distance 

between two nodes are calculated from the time difference between transmitting and 

receiving, and as a result the position can be determined by trilateration in the same 

way as in the RSS case. However, in practice, this becomes a lot harder due to clock 

drifts. Essentially the problem comes down to clock synchronization, where nodes 

need to be synchronized down to nanosecond scale in order to achieve a proper 

distance approximation. For a network such as Lora WAN where the nodes are 
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supposed to be low-cost and idle for a large amount of the time, the internal clock 

drift makes this a quite hard problem. There are techniques to go about this, such as 

two-way time of arrival (TW-TOA) or time difference of arrival (TDOA). The 

common denominator of these techniques is that they only demand the anchor nodes 

to be time synchronized, and there for the low cost of target nodes is not 

compromised. In TW-TOA the round-trip time between anchor and target node is 

measured, and if the target node has a well-defined processing time of the message 

this can give a good distance estimation. For TDOA the target node sends a broadcast 

message which is received by multiple anchor nodes. The anchor nodes, which are 

time synchronized, can then calculate the distance from the difference in time 

between signal receptions. This is a multiliterate problem which involves solving a set 

of hyperbolic functions, and therefore an additional anchor node is needed compared 

to the trilateration case. 

 

  2.1.2.4  Time of Flight (ToF) Technique 

                          Time of Flight (ToF) exploits the signal propagation time to 

calculate the distance between the transmitter Tx and the receiver Rx. The ToF value 

multiplied by the speed of light c = 3 x 108 m/sec Provides the physical distance 

between Tx and Rx. In Figure 2.19, the ToF from three different reference nodes is 

used to estimate the distances between the reference nodes and the device. Basic 

geometry can be used to calculate the location of the device with respect to the access 

points. Similar to the RSS, the ToF values can be used in both the DBL and MBL 

scenarios.  ToF requires strict synchronization between transmitters and receivers and, 

in many cases, timestamps to be transmitted with the signal (depending on the 

underlying communication protocol). The key factors that affect ToF estimation 

accuracy are the signal bandwidth and the sampling rate. Low sampling rate (in time) 

reduces the ToF resolution since the signal may arrive between the sampled intervals. 

Frequency domain superresolution techniques are commonly used to obtain the ToF 

with high resolution from the channel frequency response. In multipath indoor 

environments, the larger the bandwidth, 
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Figure 2.19 ToF based user equipment (UE) localization 

 

   The higher the resolution of ToF estimation. Although 

largeband width and super-resolution techniques can improve the performance of 

ToF, still they cannot eliminate significant localization errors when the direct line of 

sight path between the transmitter and receiver is not available. This is because the 

obstacles deflect the emitted signals, which then traverse through a longer path 

causing an increase in the time taken for the signal to propagate from Tx to Rx. Let t1 

be the time when Tx i sends a message to the Rx j that receives it at t2 where t2 = t1 + 

tp (tp is the time taken by the signal to traverse from Tx to Rx) [17]. So, the distance 

between the i and j can be calculated using Equation (2.3) where v is the signal 

velocity. 

 

Dij = (t2 – t1) ÷ × v                                                (2.3) 

  

  2.1.2.5  Time Difference of Arrival (TDoA) Technique 

                          Time Difference of Arrival (TDoA) exploits the difference in 

signals propagation times from different transmitters, measured at the receiver. This is 

different from the ToF technique, where the absolute signal propagation time is used. 

The TDoA measurements (TD(i;j) - from transmitters i and j) are converted into 

physical distance values LD(i;j) = c _ TD(i;j), where c is the speed of light. The 

receiver is now located on the hyperboloid given by Eq. (2.4). 
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Lୈሺ୧,୨ሻ 	ൌ 	ඥሺX୧	 െ xሻଶ	 ൅ ሺY୧ െ yሻଶ ൅	ሺZ୧ െ zሻଶ	 

																																						െ		ඥሺX୧	 െ xሻଶ	 ൅ ሺY୧ െ yሻଶ ൅	ሺZ୧ െ zሻଶ	                               (2.4) 

 

where (Xi; Yi; Zi) are the coordinates of the transmitter/reference node i and (x; y; z) 

are the coordinates of the receiver/user. 

 

 

 

Figure 2.20 TDoA based localization and proximity detection 

            

    The TDoA from at least three transmitters is needed to 

calculate the exact location of the receiver as the intersection of the three (or more) 

hyperboloids. The system of hyperbola equations can be solved either through linear 

regression [18] or by linearizing the equation using Taylorseries expansion. Figure 

2.20 shows how four different RNs can be used to obtain the 2D location of any 

target. Figure shows the hyperbolas formed as a result of the measurements obtained 

from the RNs to obtain the user location (black dot). The TDoA estimation accuracy 

depends (similar to the ToF techniques) on the signal bandwidth, sampling rate at the 

receiver and the existence of direct line of sight between the transmitters and the 

receiver. Strict synchronization is also required, but unlike ToF techniques where 

synchronization is needed between the transmitter and the receiver, in the TDoA case 

only synchronization between the transmitters is required. 
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  2.1.2.6 Angle of Arrival (AOA) Technique 

                          Angle of Arrival (AoA) based approaches use antennae arrays 

[19] (at the receiver side) to estimate the angle at which the transmitted signal 

impinges on the receiver by exploiting and calculating the time difference of arrival at 

individual elements of the antennae array. The main advantage of AoA is that the 

device/user location can be estimated with as low as two monitors in a 2D 

environment, or three monitors in a 3D environment respectively. Although AoA can 

provide accurate estimation when the transmitter-receiver distance is small, it requires 

more complex hardware and careful calibration compared to RSS techniques, while 

its accuracy deteriorates with increase in the transmitter-receiver distance where a 

slight error in the angle of arrival calculation is translated into a huge error in the 

actual location estimation [20]. Moreover, due to multipath effects in indoor 

environments the AoA in terms of line of sight (LOS) is often hard to obtain. Figure 

2.21 shows how AoA can be used to estimate the user location (as the angles at which 

the signals are received by the antenna array can help locate the user device.). 

 

 

 

Figure 2.21 AoA based localization 

                        

   In the AOA technique, the estimation of the signal reception 

angles, from at least two sources, is compared with either the signal amplitude or 

carrier phase across multiple antennas. The location can be found from the 

intersection of the angle line for each signal source, see Figure 2.22. AOA estimation 

algorithms are very sensitive to many factors, which may cause errors in their 
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estimation of target position. Furthermore, AOA estimation algorithms have a higher 

complexity compared to other methods. For instance, the antenna array geometry has 

a major role in the estimation algorithm. Increasing the distance between the sender 

and receiver may decrease the accuracy. The AOA technique can be used with other 

techniques to increase its accuracy. 

                        AOA based algorithms have been used in a vast amount of 

literature. Xu et al., presented a new cooperative positioning method based on AOA 

that utilizes pairwise AOA information among all the sensor nodes rather than relying 

only on anchor nodes [21]. Lee proposed the use of a signal model and weighted-

average to estimate AOA parameters for low data rate UWB (LR-UWB) [22]. A 

Kalman filter based AOA estimation algorithm was introduced by Subramanian, that 

relies on a new linear quadratic frequency domain invariant beamforming strategy 

[23]. Furthermore, many studies have been conducted to evaluate the performance of 

AOA for different applications, environments, hardware, and configurations. Mok et 

al., studied the feasibility and performance of AOA for UWB in the Ubisense Real-

Time Location System (RTLS) when integrated with GPS to facilitate resource 

management in underground railway construction sites [24]. The influence of UWB 

directional antennas on the performance of AOA estimation was analyzed in detail by 

Gerok et al. [25] who presented a corrected AOA estimation algorithm that mitigates 

the error resulting from the UWB directional antenna. 
 

 

 

Figure 2.22 Angle of arrival (AOA)-based algorithms 
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Figure 2.23 PoA based localization 

 

              2.1.2.7  Phase-of-Arrival (PoA)  

                          PoA based approaches use the phase or phase difference of 

carrier signal to estimate the distance between the transmitter and the receiver. A 

common assumption for determining the phase of signal at receiver side is that the 

signals transmitted from the anchor nodes (in DBL), or user device (in MBL) are of 

pure sinusoidal form having same frequency and zero phase offset. There are a 

number of techniques available to estimate the range or distance between the Tx and 

Rx using PoA. One technique is to assume that there exists a finite transit delay Di 

between the Tx and Rx, which can be expressed as a fraction of the signal 

wavelength. As seen in Figure 2.23, the incident signals arrive with a phase difference 

at different antenna in the antenna array, which can be used to obtain the use location. 

A detailed discussion on PoA-based range estimation is beyond the scope of the 

paper. Therefore, interested readers are referred to [26], [27]. Following range 

estimation, algorithms used for ToF can be used to estimate user location. If the phase 

difference between two signals transmitted from different anchor points is used to 

estimate the distance, TDoA based algorithms can be used for localization. PoA can 

be used in conjunction with RSSI, ToF, TDoA to improve the localization accuracy 

and enhance the performance of the system. The problem with PoA based approach is 
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that it requires line-of sight for high accuracy, which is rarely the case in indoor 

environments. 

               Table 2.4 provides a summary of the discussed techniques for 

indoor localization and discusses the advantages and disadvantages of these 

techniques. Interested readers are referred to [17] for detailed discussion on these 

localization techniques. 

 

Table 2.4 Advantages and Disadvantages of Different Localization Techniques  

Technique Advantages Disadvantages 

RSSI Easy to implement, cost efficient, can be used 

with a number of technologies 

Prone to multipath fading and environmental 

noise, lower localization accuracy, can require 

fingerprinting 

CSI More robust to multipath and indoor noise. It is not easily available on off-the-shelf NICs 

AoA Can provide high localization accuracy, does 

not require any 

fingerprinting 

Might require directional antennas and complex 

hardware, requires comparatively complex 

algorithms and performance deteriorates with 

increase in distance between the transmitter 

and receiver 

ToF Provides high localization accuracy, does not 

require any fingerprinting 

Requires time synchronization between the 

transmitters and receivers, might require time 

stamps and multiple antennas at the transmitter 

and receiver. Line of Sight is mandatory for 

accurate performance. 

TDoA Does not require any fingerprinting, does not 

require clock synchronization among the device 

and RN 

Requires clock synchronization among the RNs, 

might require time stamps, requires larger 

bandwidth 

RToF Does not require any fingerprinting, can provide 

high localization 

accuracy 

Requires clock synchronization, processing 

delay can affect performance in short ranger 

measurements 

PoA Can be used in conjunction with RSS, ToA, 

TDoA to improve the overall localization 

accuracy 

Degraded performance in the absence of line of 

sight 

Fingerprinting Fairly easy to use New fingerprints are required even when there 

is a minor variation in the space 

 

  2.1.2.8  Return Time of Flight (RToF) Technique 

                          RToF measures the round-trip (i.e., transmitter-receiver transmitter) 

signal propagation time to estimate the distance between Tx and Rx [17]. The ranging 

mechanisms for both ToF and RToF are similar; upon receiving a signal from the 

transmitter, the receiver responds back to the transmitter, which then calculates the 
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total round-trip ToF. The main benefit of RToF is that a relatively moderate clock 

synchronization between the Tx and the Rx is required, in comparison to ToF. 

However, RToF estimation accuracy is affected by the same factors as ToF (i.e., 

sampling rate and signal bandwidth) which in this case is more severe since the signal 

is transmitted and received twice. Another significant problem with RToF based 

systems is the response delay at the receiver which highly depends on the receiver 

electronics and protocol overheads. The latter one can be neglected if the propagation 

time between the transmitter and receiver is large compared to the response time, 

however the delay cannot be ignored in short range systems such as those used for 

indoor localization. Let t1 be the time when Tx i sends a message to the Rx j that 

receives it at t2 where t2 = t1 + tp. j, at time t3, transmits a signal back to i that 

receives it at t4 So the distance between the i and j can be calculated using Equation 

(2.5) [17]. 

 

                                 D୧୨ ൌ 	
ሺ୲రି	୲భሻି	ሺ୲యି	୲మሻ	

ଶ
	ൈ v                                   (2.5) 

                        

      2.1.3  Artificial Neural Network 

                An Artificial Neural Network (ANN) is a mathematical model that 

tries to simulate the structure and functionalities of biological neural networks. Basic 

building block of every artificial neural network is artificial neuron, that is, a simple 

mathematical model (function). Such a model has three simple sets of rules: 

multiplication, summation and activation. At the entrance of artificial neuron, the 

inputs are weighted what means that every input value is multiplied with individual 

weight. In the middle section of artificial neuron is sum function that sums all 

weighted inputs and bias. At the exit of artificial neuron, the sum of previously 

weighted inputs and bias is passing through activation function that is also called 

transfer function as can be seen in Figure 2.24.  

               Although the working principles and simple set of rules of artificial 

neuron looks like nothing special the full potential and calculation power of these 

models come to life when we start to interconnect them into artificial neural networks. 
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These artificial neural networks use simple fact that complexity can grow out of 

merely few basic and simple rules as can be seen in Figure 2.25. 

 

 

 

Figure 2.24 Working principle of an artificial neuron 

 

 

 

Figure 2.25 Example of simple artificial neural network 

 

  In order to fully harvest the benefits of mathematical complexity that 

can be achieved through interconnection of individual artificial neurons and not just 

making system complex and unmanageable we usually do not interconnect these 

artificial neurons randomly. In the past,thesis have come up with several 
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“standardized” topographies of artificial neural networks. These predefined 

topographies can help us with easier, faster and more efficient problem solving. 

Different types of artificial neural network topographies are suited for solving 

different types of problems.   

               After determining the type of given problem, we need to decide for 

topology of artificial neural network we are going to use and then fine-tune it. We 

need to fine-tune the topology itself and its parameters. Fine-tuned topology of 

artificial neural network does not mean that we can start using our artificial neural 

network, it is only a precondition. Before we can use our artificial neural network, we 

need to teach it solving the type of given problem. Just as biological neural networks 

can learn their behavior/responses on the basis of inputs that they get from their 

environment the artificial neural networks can do the same. There are three major 

learning paradigms: supervised learning, unsupervised learning and reinforcement 

learning. We choose learning paradigm similar as we chose artificial neuron network 

topography-based on the problem we are trying to solve. Although learning paradigms 

are different in their principles they all have one thing in common; on the basis of 

“learning data” and “learning rules” (chosen cost function) artificial neural network is 

trying to achieve proper output response in accordance to input signals.  

  

  2.1.3.1  Artificial neuron 

                          Artificial neuron is a basic building block of every artificial 

neural network. Its design and functionalities are derived from observation of a 

biological neuron that is basic building block of biological neural networks (systems) 

which includes the brain, spinal cord and peripheral ganglia. Similarities in design and 

functionalities can be seen in Fig.32. where the left side of a figure represents a 

biological neuron with its soma, dendrites and axon and where the right side of a 

figure represents an artificial neuron with its inputs, weights, transfer function, bias 

and outputs. 

                          In case of biological neuron information comes into the neuron 

via dendrite, soma processes the information and passes it on via axon. In case of 

artificial neuron, the information comes into the body of an artificial neuron via inputs 

that are weighted (each input can be individually multiplied with a weight). The body 
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of an artificial neuron then sums the weighted inputs, bias and “processes” the sum 

with a transfer function. At the end an artificial neuron passes the processed 

information via output(s). Benefit of artificial neuron model simplicity can be seen in 

its mathematical description below. 

 

    yሺkሻ ൌ Fሺ∑ w୧ሺkሻ ∙ x୧ሺkሻ ൅ b୫
୧ୀ଴ ሻ                            (2.6) 

                       

Where: 

 • Xi(k) is input value in discrete time k where i goes from 0 to m, 

 • Wi(k) is weight value in discrete time k where i goes from 0 to m, 

 • b is bias, 

 • F is a transfer function, 

 • Yi(k) is output value in discrete time k. 

 

              As seen from a model of an artificial neuron and its equation 

(2.6) the major unknown variable of our model is its transfer function. Transfer 

function defines the properties of artificial neuron and can be any mathematical 

function. We choose it on the basis of problem that artificial neuron (artificial neural 

network) needs to solve and in most cases, we choose it from the following set of 

functions: Step function, Linear function and Non-linear (Sigmoid) function. Step 

function is binary function that has only two possible output values. That means if 

input value meets specific threshold the output value results in one value and if 

specific threshold is not meet that results in different output value. Situation can be 

described with equation (2.7). 

 

  

 

Figure 2.26 Biological and artificial neuron design 
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                                             y ൌ ൜	
1	if	w୧x୧ 		൒ threshold
0	if	w୧x୧ 		൏ threshold                                       (2.7) 

 

              When this type of transfer function is used in artificial neuron 

we call this artificial neuron perceptron. Perceptron is used for solving classification 

problems and as such it can be most commonly found in the last layer of artificial 

neural networks. In case of linear transfer function artificial neuron is doing simple 

linear transformation over the sum of weighted inputs and bias. Such an artificial 

neuron is in contrast to perceptron most commonly used in the input layer of artificial 

neural networks. When we use non-linear function, the sigmoid function is the most 

commonly used. Sigmoid function has easily calculated derivate, which can be 

important when calculating weight updates in the artificial neural network as can be 

seen in Figure 2.26. 

 

               2.1.3.2  Artificial Neural Networks 

                          When combining two or more artificial neurons we are getting 

an artificial neural network. If single artificial neuron has almost no usefulness in 

solving real-life problems the artificial neural networks have it. In fact, artificial 

neural networks are capable of solving complex real-life problems by processing 

information in their basic building blocks (artificial neurons) in a non-linear, 

distributed, parallel and local way. 

                          The way that individual artificial neurons are interconnected is 

called topology, architecture or graph of an artificial neural network. The fact that 

interconnection can be done in numerous ways results in numerous possible 

topologies that are divided into two basic classes. Fig. 32. shows these two topologies; 

the left side of the figure represent simple feedforward topology (acyclic graph) where 

information flows from inputs to outputs in only one direction and the right side of the 

figure represent simple recurrent topology (semiacyclic graph) where some of the 

information flows not only in one direction from input to output but also in opposite 

direction. While observing need to mention that for easier handling and mathematical 

describing of an artificial neural network we group individual neurons in layers. On 

Figure 2.27. can see input, hidden and output layer.  
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Figure 2.27 Feed-forward (FNN) and recurrent (RNN) topology of an artificial neural 

network 

 

   When choose and build topology of our artificial neural 

network we only finished half of the task before we can use this artificial neural 

network for solving given problem. Just as biological neural networks need to learn 

their proper responses to the given inputs from the environment the artificial neural 

networks need to do the same. So, the next step is to learn proper response of an 

artificial neural network and this can be achieved through learning (supervised, un-

supervised or reinforcement learning). No matter which method we use, the task of 

learning is to set the values of weight and biases on basis of learning data to minimize 

the chosen cost function. 

 

              2.1.3.3 Feed-forward Artificial Neural Networks 

                          Artificial neural network with feed-forward topology is called 

Feed-Forward artificial neural network and as such has only one condition: 

information must flow from input to output in only one direction with no back-loops. 

There are no limitations on number of layers, type of transfer function used in 

individual artificial neuron or number of connections between individual artificial 

neurons. The simplest feed-forward artificial neural network is a single perceptron 

that is only capable of learning linear separable problems. Simple multi-layer feed-

forward artificial neural network for purpose of analytical description as can be seen 

in Figure 2.28. 
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    nଵ ൌ Fଵሺwଵxଵ ൅ bଵሻ 

    nଶ ൌ Fଶሺwଶxଶ ൅ bଶሻ	 

    nଷ ൌ Fଶሺwଶxଶ ൅ bଶሻ 

                                                 nସ ൌ Fଷሺwଷxଷ ൅ bଷሻ																																													      (2.8) 

                       

    mଵ ൌ Fସሺqଵnଵ ൅ qଶnଶ ൅ bସሻ 

                                          mଶ ൌ Fହሺqଷnଷ ൅ qସnସ ൅ bହሻ																																				      (2.9) 

                       

y ൌ F଺ ቈ
rଵ൫FସൣqଵFଵሾwଵxଵ ൅ bଵሿ ൅ qଶFଶሾwଶxଶ ൅ bଶሿ൧ ൅ bସ൯ ൅ ⋯

…൅ rଶሺFହሾqଷFଶሾwଶxଶ ൅ bଶሿ ൅ qସFଷሾwଷxଷ ൅ bଷሿ ൅ bହሿሻ ൅	b଺
቉ 

         (2.10) 

 

 

 

Figure 2.28 Feed-forward artificial neural network 

 

   As corresponding analytical description with sets of equations 

(2.8), (2.9) and (2.10) the simple feed-forward artificial neural network can led to 

relatively long mathematical descriptions where artificial neural networks’ parameters 

optimization problem solving by hand is impractical. Although analytical description 

can be used on any complex artificial neural network in practice we use computers 

and specialized software that can help us build, mathematically describe and optimize 

any type of artificial neural network. 
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              2.1.3.4  Recurrent Artificial Neural Networks 

   Artificial neural network with the recurrent topology is called 

Recurrent artificial neural network. It is similar to feed-forward neural network with 

no limitations regarding back loops. In these cases, information is no longer 

transmitted only in one direction but it is also transmitted backwards. This creates an 

internal state of the network which allows it to exhibit dynamic temporal behavior. 

Recurrent artificial neural networks can use their internal memory to process any 

sequence of inputs. Figure 2.29 shows small Fully Recurrent  

 

 

 

Figure 2.29 Fully recurrent artificial neural network 

 

artificial neural network and complexity of its artificial neuron interconnections. The 

most basic topology of recurrent artificial neural network is fully recurrent artificial 

network where every basic building block (artificial neuron) is directly connected to 

every other basic building block in all direction. Other recurrent artificial neural 

networks such as Hopfield, Elman, Jordan, bi-directional and other networks are just 

special cases of recurrent artificial neural networks. 

 

              2.1.3.5  Elman and Jordan Artificial Neural Networks 

                          Elman network also referred as Simple Recurrent Network is 

special case of recurrent artificial neural networks. It differs from conventional two-

layer networks in that the first layer has a recurrent connection. It is a simple three-
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layer artificial neural network that has back-loop from hidden layer to input layer 

trough so called context unit This type of artificial neural network has memory that 

allowing it to both detect and generate time-varying patterns as can be seen in Figure 

2.30. 

                          The Elman artificial neural network has typically sigmoid 

artificial neurons in its hidden layer, and linear artificial neurons in its output layer. 

This combination of artificial neurons transfer functions can approximate any function 

with arbitrary accuracy if only there is enough artificial neurons in hidden layer. 

Being able to store information Elman artificial neural network is capable of 

generating temporal patterns as well as spatial patterns and responding on them. 

Jordan network is similar to Elman network. The only difference is that context units 

are fed from the output layer instead of the hidden layer as can be seen in Figure 2.31. 

 

 

 

Figure 2.30 Elman artificial neural network 

 

 

 

Figure 2.31 Jordan artificial neural network 
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              2.1.3.6  Long Short-Term Memory 

                          Long Short-Term Memory is one of the recurrent artificial 

neural network’s topologies. In contrast with basic recurrent artificial neural networks 

it can learn from its experience to process, classify and predict time series with very 

long-time lags of unknown size between important events. This makes Long Short-

Term Memory to outperform other recurrent artificial neural networks, Hidden 

Markov Models and other sequence learning methods.   

                         Long Short-Term Memory artificial neural network is build 

from Long Short-Term Memory blocks that are capable of remembering value for any 

length of time. This is achieved with gates that determine when the input is significant 

enough remembering it, when continue to remembering or forgetting it, and when to 

output the value. Architecture of Long Short-Term Memory block is shown in Figure 

2.32 where input layer consists of sigmoid units. Top neuron in the input layer process 

input value that might be sent to a memory unit depends on computed value of second 

neuron from the top in the input layer. The third neuron from the top in the input layer 

decide how long will memory unit hold (remember) its value and the bottom most 

neuron determines when value from memory should be released to the output. 

Neurons in first hidden layer and in output layer are doing simple multiplication of 

their inputs and a neuron in the second hidden layer computes simple linear function 

of its inputs. Output of the second hidden layer is fed back into input and first hidden 

layer in order to help making decisions. 

             

  2.1.3.7  Bi-directional Artificial Neural Networks (Bi-ANN) 

                          Bi-directional artificial neural networks are designed to predict 

complex time series. They consist of two individual interconnected artificial neural 

(sub) networks that performs direct and inverse (bidirectional) transformation. 

Interconnection of artificial neural sub networks is done through two dynamic 

artificial neurons that are capable of remembering their internal states. This type of 

interconnection between future and past values of the processed signals increase time 

series prediction capabilities. As such these artificial neural networks not only predict 

future values of input data but also past values. That brings need for two phase 

learning; in first phase we teach one artificial neural sub network for predicting future 
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and in the second phase we teach a second artificial neural sub network for predicting 

past as can be seen in Figure 2.33. 

              

  2.1.3.8  Self-Organizing Map (SOM) 

                          Self-organizing map is an artificial neural network that is 

related to feed-forward networks but it needs to be told that this type of architecture is 

fundamentally different in arrangement of neurons and motivation. Common 

arrangement of neurons is in a hexagonal or rectangular grid. Self-organizing map is 

different in comparison to other artificial neural networks in the sense that they use a 

neighborhood function to preserve the topological properties of the input space. They 

use unsupervised learning paradigm to produce a low-dimensional, discrete 

representation of the input space of the training samples, called a map what makes 

them especially useful for visualizing low-dimensional views of high-dimensional 

data. Such networks can learn to detect regularities and correlations in their input and 

adapt their future responses to that input accordingly as can be seen in Figure 2.34. 

 

 

 

Figure 2.32 Simple Long Short-Term Memory artificial neural network (block) 
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Figure 2.33 Bi-directional artificial neural network 

 

 

 

Figure 2.34 Self-organizing Map in rectangular (left) and hexagonal (right) grid 

 

                Just as others artificial neural networks need learning before 

they can be used the same goes for self-organizing map; where the goal of learning is 

to cause different parts of the artificial neural network to respond similarly to certain 

input patterns. While adjusting the weights of the neurons in the process of learning 

they are initialized either to small random values or sampled evenly from the 

subspace spanned by the two largest principal component eigenvectors. After 

initialization artificial neural network needs to be fed with large number of example 
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vectors. At that time Euclidean distance to all weight vectors is computed and the 

neuron with weight vector most similar to the input is called the best matching unit. 

The weights of the best matching unit and neurons close to it are adjusted towards the 

input vector. This process is repeated for each input vector for a number of cycles. 

After learning phase, we do so-called mapping (usage of artificial neural network) and 

during this phase the only one neuron whose weight vector lies closest to the input 

vector will be winning neuron. Distance between input and weight vector is again 

determined by calculating the Euclidean distance between them. 

               

  2.1.3.9  Stochastic Artificial Neural Network 

                           Stochastic artificial neural networks are a type of an artificial 

intelligence tool. They are built by introducing random variations into the network, 

either by giving the network's neurons stochastic transfer functions, or by giving them 

stochastic weights. This makes them useful tools for optimization problems, since the 

random fluctuations help it escape from local minima. Stochastic neural networks that 

are built by using stochastic transfer functions are often called Boltzmann machine. 

               

  2.1.3.10  Physical Artificial Neural Network 

                             Most of the artificial neural networks today are software-

based but that does not exclude the possibility to create them with physical elements 

which base on adjustable electrical current resistance materials. History of physical 

artificial neural networks goes back in 1960’s when first physical artificial neural 

networks were created with memory transistors called memristors. Memristors 

emulate synapses of artificial neurons. Although these artificial neural networks were 

commercialized they did not last for long due to their incapability for scalability. 

After this attempt several others followed such as attempt to create physical artificial 

neural network based on nanotechnology or phase change material. 

 

      2.1.4  Learning 

                There are three major learning paradigms; supervised learning, 

unsupervised learning and reinforcement learning. Usually they can be employed by 
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any given type of artificial neural network architecture. Each learning paradigm has 

many training algorithms. 

                

  2.1.4.1  Supervised learning 

                            Supervised learning is a machine learning technique that sets 

parameters of an artificial neural network from training data. The task of the learning 

artificial neural network is to set the value of its parameters for any valid input value 

after having seen output value. The training data consist of pairs of input and desired 

output values that are traditionally represented in data vectors. Supervised learning 

can also be referred as classification, where we have a wide range of classifiers, each 

with its strengths and weaknesses. Choosing a suitable classifier (Multilayer 

perceptron, Support Vector Machines, k-nearest neighbor algorithm, Gaussian 

mixture model, Gaussian, naive Bayes, decision tree, radial basis function classifiers,) 

for a given problem is however still more an art than a science. In order to solve a 

given problem of supervised learning various steps has to be considered. In the first 

step we have to determine the type of training examples. In the second step we need 

to gather a training data set that satisfactory describe a given problem. In the third step 

we need to describe gathered training data set in form understandable to a chosen 

artificial neural network. In the fourth step we do the learning and after the learning 

we can test the performance of learned artificial neural network with the test 

(validation) data set. Test data set consist of data that has not been introduced to 

artificial neural network while learning. 

                 

  2.1.4.2  Unsupervised learning 

                             Unsupervised learning is a machine learning technique that 

sets parameters of an artificial neural network based on given data and a cost function 

which is to be minimized. Cost function can be any function and it is determined by 

the task formulation. Unsupervised learning is mostly used in applications that fall 

within the domain of estimation problems such as statistical modelling, compression, 

filtering, blind source separation and clustering. In unsupervised learning we seek to 

determine how the data is organized. It differs from supervised learning and 

reinforcement learning in that the artificial neural network is given only unlabeled 
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examples. One common form of unsupervised learning is clustering where we try to 

categorize data in different clusters by their similarity. Among above described 

artificial neural network models, the Self-organizing maps are the ones that the most 

commonly use unsupervised learning algorithms. 

                 

  2.1.4.3  Reinforcement learning 

                             Reinforcement learning is a machine learning technique that 

sets parameters of an artificial neural network, where data is usually not given, but 

generated by interactions with the environment. Reinforcement learning is concerned 

with how an artificial neural network ought to take actions in an environment so as to 

maximize some notion of long-term reward. Reinforcement learning is frequently 

used as a part of artificial neural network’s overall learning algorithm.  

                             After return function that needs to be maximized is defined, 

reinforcement learning uses several algorithms to find the policy which produces the 

maximum return. Naive brute force algorithm in first step calculates return function 

for each possible policy and chooses the policy with the largest return. Obvious 

weakness of this algorithm is in case of extremely large or even infinite number of 

possible policies. This weakness can be overcome by value function approaches or 

direct policy estimation. Value function approaches attempt to find a policy that 

maximizes the return by maintaining a set of estimates of expected returns for one 

policy; usually either the current or the optimal estimates. These methods converge to 

the correct estimates for a fixed policy and can also be used to find the optimal policy. 

Similar as value function approaches the direct policy estimation can also find the 

optimal policy. It can find it by searching it directly in policy space what greatly 

increases the computational cost. 

                             Reinforcement learning is particularly suited to problems 

which include a long-term versus short-term reward trade-off. It has been applied 

successfully to various problems, including robot control, telecommunications, and 

games such as chess and other sequential decision-making tasks. 
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  2.1.4.4  Usage of Artificial Neural Networks 

                             One of the greatest advantages of artificial neural networks is 

their capability to learn from their environment. Learning from the environment 

comes useful in applications where complexity of the environment (data or task) make 

implementations of other type of solutions impractical. As such artificial neural 

networks can be used for variety of tasks like classification, function approximation, 

data processing, filtering, clustering, compression, robotics, regulations, decision 

making, etc.  

                             Choosing the right artificial neural network topology depends 

on the type of the application and data representation of a given problem. When 

choosing and using artificial neural networks we need to be familiar with theory of 

artificial neural network models and learning algorithms. Complexity of the chosen 

model is crucial; using to simple model for specific task usually results in poor or 

wrong results and over complex model for a specific task can lead to problems in the 

process of learning.  

                             Complex model and simple task results in memorizing and not 

learning. There are many learning algorithms with numerous tradeoffs between them 

and almost all are suitable for any type of artificial neural network model. Choosing 

the right learning algorithm for a given task takes a lot of experiences and 

experimentation on given problem and data set. When artificial neural network model 

and learning algorithm is properly selected we get robust tool for solving given 

problem. 

 

2.2 Literature Reviews 

       Various indoor positioning technologies can be used concurrently to gain the 

advantages of each one. The appropriate indoor positioning technology should be 

selected carefully in order to make the right balance between the complexity and the 

performance of IPSs [28,29]. Indoor positioning technologies are classified by 

researchers in many different ways. In 2003, Collin et al., classified indoor 

positioning technologies into two classes according to the need for hardware: 

technologies that require special hardware in the building and self-contained 

technologies [30]. On the other hand, Gu et al., provided different classifications of 
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indoor positioning technologies in 2009, in which they divided them, into two classes 

based on their need for existence of networks: network-based 

       In 2011, Al Nuaimi and Kamel classified indoor positioning technologies 

into fixed indoor positioning systems and indoor pedestrian positioning systems [31]. 

This classification is quite similar to the classification introduced by Collin et al., 

Similarly, Chliz et al., classified the indoor positioning techniques into two categories; 

parametric where a position is computed based on prior knowledge and non-

parametric where a position is computed by processing the data taking into 

consideration some statistical parameters [32]. 

        On the other hand, Rainer Mautz provided a different classification of indoor 

positioning technologies in 2012 [33]. He divided them into thirteen categories; 

camera, infrared, tactile polar systems, sound, WLAN and WiFi, RFID, ultra-

wideband, high sensitivity GNSS, pseudofiles, other radio frequencies, inertial 

navigation, magnetic systems, and infrastructure systems. Table 5 summarizes 

existing classification of indoor positioning technologies gathered from the literature. 

Table 2.5 Different Classifications of Indoor Positioning Technologies. 

 

Table 2.5 Different Classifications of Indoor Positioning Technologies 

Author-Year Classified based on Categories 

Collin et al.—2003 Need for hardware Technologies that require hardware in the building, 

and self-contained ones 

Gu et al.—2009 

Existence of network Network-based and non-network-based technologies 

System architecture Self-positioning architecture, self-oriented 

infrastructure-assisted architecture, and infrastructure 

positioning architecture 

Main medium used to

determine positions 

Ultrasound, radio frequency, magnetic, vision-Based, 

and audible sound technologies 

Al Nuaimi and 

Kamel—2011 

Installed system in a

building 

Fixed indoor positioning and indoor pedestrian 

positioning 

Chliz et al.—2011 Prior knowledge Parametric and non-parametric technologies 

Rainer Mautz—

2012 

Sensor type Camera, infrared, tactile & polar systems, sound, 

WLAN and Wi-Fi, RFID, ultra-wideband, high 

sensitivity GNSS, pseudofiles, other radio frequencies, 

inertial navigation, magnetic systems, and 

infrastructure systems 
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 In contrast to the previous classifications, we provide a new classification 

for indoor positioning technologies according to the infrastructure of the system that 

uses them, see Figure 3. We classify indoor positioning technologies into two main 

classes; building dependent and building independent. Building dependent indoor 

positioning technologies refer to technologies that depend on the building that they 

will operate in. They depend either on an existing technology in the building or on the 

map and structure of the building. Building dependent indoor positioning technologies 

can be further divided into two major classes: indoor positioning technologies that 

require dedicated infrastructure and indoor positioning technologies that utilize the 

building’s infrastructure. The need for dedicated infrastructure is determined 

according to the general structure of most current buildings; e.g., most buildings 

contain WIFI while almost none contains radio frequency identification. Indoor 

positioning technologies that require dedicated infrastructure are radio frequency that 

is either RFID or UWB, infrared, ultrasonic, Zigbee and laser 

        Indoor positioning technologies that utilize the building’s infrastructure are 

WIFI, cellular based, and Bluetooth. On the other hand, the building independent 

technologies do not require any special hardware in a building such as dead reckoning 

and image-based technologies. In dead reckoning, an object can determine its current 

position by knowing its past position, its speed and the direction in which it is moving 

[34]. Image based technologies mainly rely on a camera sensor and image 

processing). Image based technologies can be building independent or building 

dependent. Image based building dependent technologies depend on special signs in a 

building or a map of the building. Image based building independent technologies do 

not require information about the building’s map or any special signs. Figure 2.35 

shows our classification of indoor positioning technologies according to the 

infrastructure of the system that uses them. Further detail of each technology is given 

in the following section. 
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Figure 2.35 Classification of indoor positioning technologies 

 

         Radio Frequency Identification (RFID). Radio frequency Identification uses 

radio waves to transmit the identity of an object (or person) wirelessly. RFID 

technology is most commonly used to automatically identify objects in large systems. 

It is based on exchanging different frequencies of radio signals between two main 

components: readers and tags. Tags emit radio signals that are received by readers and 

vice versa. Both tags and readers use predefined radio frequencies and protocols to 

send and receive data between them. Tags are attached to all the objects that need to 

be tracked. The tags consist of a microchip which can typically store up to 2 kilobytes 

of data, and a radio antenna. There are two types of tags; active tags and passive tags. 

On the other hand, an RFID reader consists of different components; including an 

antenna, transceiver, power supply, processor, and interface, in order to connect to a 

server [34,35,36]. Although different positioning methods can be used with RFID, 

proximity is the most used one and it senses the presence of RFID tags rather than the 

exact position [32,35,37]. Also received signal strength (RSS) could be used with 

RFID [35].  
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           Ultra-Wideband (UWB). The Federal Communications Commission defines 

UWB as an RF signal occupying a portion of the frequency spectrum that is greater 

than 20% of the center carrier frequency, or has a bandwidth greater than 500 MHz 

UWB is a communication channel that spreads information out over a wide portion of 

the frequency spectrum. This allows UWB transmitters to transmit large amounts of 

data while consuming little transmit energy [36]. UWB can be used for positioning by 

utilizing the time difference of arrival (TDOA) of the RF signals to obtain the distance 

between the reference point and the target [38]. 

           Infrared (IR). Infrared wireless communication makes use of the invisible 

spectrum of light just below the red edge of the visible spectrum, which makes this 

technology less intrusive than indoor positioning that is based on visible light [33,37]. 

IR can be used in two different ways; direct IR and diffuse IR. Infrared Data 

Association (IrDA) is an example of direct IR that uses a point-to-point ad-hoc data 

transmission standard designed for very low-power communications. IrDA requires 

line of sight communication between devices over a very short distance and up to 16 

Mbps. On the other hand, diffuse IR has stronger signals than direct IR, and therefore 

it has a longer reach (9–12 m). Diffuse IR uses wide angle LEDs which emit signals 

in many directions. Thus, it allows one to many connections and does not require 

direct line of sight [36]. Proximity, differential phase-shift, and angle of arrival (AoA) 

positioning methods are frequently used with Infrared technology [39-41]. 

           Ultrasonic. An ultrasound wave is “a mechanical wave that is an oscillation 

of pressure transmitted through a medium” [36]. It does not interfere with 

electromagnetic waves and has relatively short range. Ultrasonic positioning systems 

leverage building material and the air as a propagation medium. The relative distance 

between the different devices can be estimated using time of arrival (ToA) 

measurements of ultrasound pulses traveling from emitters to the receivers. The 

emitter’s coordinates can be estimated by multilateration from three (or more) ranges 

to some fixed receivers [33]. 

          Zigbee. The ZigBee standard “provides network, security, and application 

support services operating on top of the IEEE 802.15.4 specification” It is a short 

distance and low rate wireless personal area network [33,38]. A basic ZigBee node is 

small and has low complexity and cost. It consists of a microcontroller and a 
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multichannel two-way radio on one piece of silicon [36]. Zigbee is designed for 

applications that require low power consumption and low data throughput There are 

two different physical device types used for ZigBee nodes, full function device (FFD) 

and reduced function device (RFD) [36]. This technology achieves positioning by 

coordination and communications with neighboring nodes. Usually, RSS values are 

used to estimate a distance between Zigbee nodes [33]. Phase shift measurement is a 

new approach that was recently introduced to ranging the nodes in ZigBee network 

[40,41]. The phase shift of the reflected signal from the target node due to the time 

delay between the target and transmitter is used to measure the distance between 

them. 

          Wireless Local Area Network (WLAN). The IEEE 802.11WLANstandard 

was ratified in June 1997. The standard defines “the protocol and compatible 

interconnection of data communication equipment via the air in a local area network 

(LAN) using the carrier sense multiple access protocol with collision avoidance 

(CSMA/CA) medium sharing mechanism” [36]. Using a typical gross bit rate of 11, 

54, or 108 Mbps and a range of 50 to 100 m, IEEE 802.11 is considered the dominant 

local wireless networking standard [35]. Using WiFi in indoor positioning and 

navigation systems depends on knowing a list of wireless routers that are available in 

an area in which the system operates. The most popular WLAN positioning method is 

received signal strength (RSS) which is easy to extract in 802.11 networks and could 

run on off-the-shelf WLAN hardware [33]. Time of arrival (ToA), time difference of 

arrival (TDoA), and angle of arrival (AoA) mechanisms are less common in WLAN 

because of the angular measurements and time delay complexity. Using RSS, the 

accuracy of WLAN positioning systems is around 3 to 30 m [42-44]. 

         Cellular Based. Global System for Mobile Communications (GSM) 

networks are available in most countries and can outreach the coverage of WLAN 

with lower positioning accuracy. GSM operates in the licensed bands and prevents 

interference from other devices operating at a similar frequency (unlike WLAN) [33]. 

It is possible to use indoor positioning on a mobile cellular network if the building is 

covered by one or more base stations with strong RSS [35]. The most common 

method of GSM indoor positioning is fingerprinting which is based on the power 

level (RSS) [33]. 
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      Bluetooth. Bluetooth is a proprietary format managed by the Bluetooth 

Special Interest Group (SIG) and it represents a standard for wireless personal area 

networks (WPANs) [33]. Bluetooth is designed to be a very low power technology for 

peer-to-peer communications, and it operates in the 2.4-GHz ISM band. In 

comparison with WLAN, the gross bit rate is lower and the range is shorter 

(approximately 10 cm to 10 m [35,36]). The Bluetooth SIG groups include a local 

group that investigates the use of Bluetooth wireless technology for positioning. 

Bluetooth technology commonly uses proximity and RSS methods to estimate 

positions [36]. 

         Dead Reckoning. In dead reckoning, an object can approximately determine 

its current position by knowing the past position and the velocity with which it moves. 

Dead reckoning is a navigation technology that needs to begin with a known position; 

and will then add and track changes. These changes can be in the form of Cartesian 

coordinates or velocity. With the right number of absolute position updates, dead 

reckoning’s linearly growing position errors might be contained within pre-defined 

bounds [34]. In order to improve accuracy and reduce error, dead reckoning must use 

other methods to adjust the position of the object after each interval [44]. Pedestrian 

dead reckoning is an example that simply estimates the step length and direction of a 

walking person [34]. 

         Image Based Technologies. Image based indoor positioning technologies, 

which are sometimes called optical methods, include camera and computer vision-

based technologies [33,45]. Different types of camera can be used such as mobile 

phone cameras, omni-directional camera, and three-dimensional cameras; however, 

their performance varies due to the amount of information that can be extracted from 

their images [38]. The success of image-based technologies relies on different factors, 

such as; improvement and miniaturization of actuators, advancement in the 

technology of the detectors, an increase in the data transmission rates and 

computational capabilities and development of algorithms in image processing [45]. 

Image based positioning systems can be categorized into two main categories; ego 

motion systems which use a camera’s motion relative to a rigid scene to estimate the 

current position of the camera and static sensor systems which locate moving objects 

in the images. 
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         Pseudofiles. Since Satellites signals cannot penetrate most indoor 

environment such as buildings, coal mines, long tunnels and others, pseudofiles are 

used to generate GPS-like signals that can be used within indoor environments to 

allow GPS device to continue receiving signals from those transmitters rather than 

satellites. In order to cope with less accurate clock within pseudo lite transmitters 

which yields clock bias error, different techniques were developed. Pseudo lite-based 

indoor navigation may differ from system to another depending on the transmitting 

devices such as pseudofiles, synchronies, localities, and transceivers [46]. Wang have 

presented a survey of historical pseudolite developments including pseudo lite-base 

positioning and technical challenges [47]. Similarly, Eriksson and Badea studied 

different pseudolite-based indoor navigation systems and provided some 

recommendations. Pseudolites for indoor environments are still negatively affected by 

multipath, signal interference among pseudolites, weak time synchronization due to 

less accurate clocks within pseudolites, and carrier phase ambiguities [46]. Several 

pseudolites based positioning systems were developed recently that vary in their 

accuracy and coverage [48-51].  

         Indoor positioning applications may require different quality attributes 

Therefore, IPSs should be carefully chosen to meet the requirements of the 

application. Table 5 provides a comparison between indoor positioning technologies 

in terms of advantages and disadvantages of each technology that needs to be 

considered during the IPSs selection process. 

         Kok et al., designed an indoor positioning approach in 2015 based on a 

sensor fusion method that combines inertial sensors and time of arrival measurements 

from UWB. Their approach depends on an UWB transmitter that is rigidly attached to 

inertial measurements unit and a number of UWB receivers placed indoors. UWB 

measurements here are modeled using a heavy-tailed asymmetric distribution that 

handles the delays of measurements due to NLOS and multipath. In order to obtain 

information of a position from the UWB measurements, the receivers’ positions must 

be known and their clocks must be synchronized. Their experiment shows that their 

UWB measurements model lead to accurate position estimates [52].  
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         Positioning of human body movement for cluttered indoor environment uses 

wearable UWB technology to obtain 1–2 cm error using eight base stations, while 

four base stations were used in different shapes to obtain a slightly lower accuracy for 

locating body movement [53]. In most configurations, peak detection algorithm was 

used to estimate TOA of the received signals.  

           In 2013, Zaric et al., presented the ability of localization of a conformal 

wall-embedded tag in a suitcase using UWB. The system contains two main modules: 

an optical position measurement system that is based on a web-camera and an UWB 

positioning system. The author attempted to test the localization accuracy and the tag 

detection reliability in different situations of a suitcase. The test shows average 

positioning error of around 8 cm [54]. 

           Generalized Gaussian mixtures (GGM) approximative method was 

compared and outperformed extended Kalman filter to provide more accurate position 

estimation in movement tracking in environment with uncertainty while still keeping 

computational complexity reasonable to use in mobile devices [55]. 

           Krishnan et al., have used TDOA for UWB indoor positioning system where 

the site has been divided into cells and each cell has four UWB readers mounted on 

the top corners to have line-of-sight with user tag. In this manner, the readers will be 

able to receive the signals from the user tag then send the time of arrival to a central 

processing unit to determine TDOA and find user location [56]. Rowe et al., designed 

one dimensional system with two sensors and one tag using TDOA-based algorithm 

to determine the tag location [57]. On-off keying (OOK) modulation was used to 

overcome the collision induced by synchronous tag transmission, increase the 

performance, and decrease the cost and power at the same time. Leitinger et al., 

utilized prior knowledge of floor plan to improve positioning in multipath 

environment using the concept of equivalent Fisher information [58].  

           Cyganski et al., presented a new way to utilize multi-carrier signal to 

performance degradation due to multipath signals within indoor environment [59,60]. 

The authors applied matrix decomposition-based multi-carrier range recovery 

algorithm to improve accuracy of positioning in severe multipath environment. 
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           In 2012, Ruiqing Ye presented a detailed study about UWB localization 

systems that have different accuracy requirements and complexity. He developed a 

three-dimensional localization system with a centimeter accuracy using UWB 

technology to track miniature mechanical parts in an airplane wheel. The system uses 

a TDOA algorithm and four receivers in order to track these parts. Two technical 

challenges are observed after testing the system in an environment that is rich with 

metal objects: angle-dependent waveform distortion and path overlap. He proposed a 

range estimation method to reduce the error caused by the path overlap. Also, the 

author discussed the effect of the receiver configuration on the performance of 

TDOA. Moreover, the author designed a wireless localization system that has a 

centimeter accuracy [61]. 

           Zwirello et al., provided a complete demonstration of designing an UWB 

positioning system in 2012 that includes a choice of positioning method, access 

points’ placement, error sources analysis, and simulation and verification of 

measurement. The authors also implemented and evaluated various TDOA 

algorithms. They concluded that a combination of modified Bancroft and Levenberg 

Marquardt algorithms are the most efficient algorithms. A series of evaluations and 

tests were conducted in designing the corresponding UWB positioning system. They 

improved the average accuracy from 9 to 2.5 cm [62]. 

            Garcia et al., presented a robust UWB indoor positioning to operate in a 

highly complex indoor scenario in which NLOS condition is highly expected [63]. 

The system detects the NLOS condition using channel impulse response in order to 

effectively apply Extended Kalman Filter that improves the accuracy.  
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Chapter 3 

Methodology 

 

3.1 Technique Selection 

 This research uses the received signal strength indication (RSSI) from LoRa 

technology as a core method with enhanced analysis using artificial neural networks 

(ANN) to conduct the LoRa-based intelligent indoor localization system. Although 

there are many potential techniques and technologies, such as WiFi, Bluetooth, or 

other existing wireless technology, available to be deployed for localization 

application. The use of both multiple LoRa modules combining with ANN tool is not 

much realized and widely used for such an application. Due to the advantage of wide 

coverage of LoRa technology compared to other candidates and the flexibility to 

develop its own gateway device, it can be considered as a suitable approach for 

variety of size of localized area ranging from, for example, a small warehouse and 

even a large-size indoor factory. Furthermore, the ANN tool is also utilized in order to 

reduce the complexity to build their own proprietary function, which is in fact 

difficult to be replicated by other users, especially to advocate the rapid deployment 

and simple utilization in actual use case. In addition, some concerns of location error 

might need to be taken into consideration, which includes the occurred error signal 

strength that may cause by the interference from that surrounding environment and 

the insufficient performance of trained ANN model that may be affected by unreliable 

collection of intend data in some circumstances.  

 

3.2 Experiment Process and Design 

 In this research, the experiment has deployed four sets of LoRa modules two 

meters above from the ground in order to spontaneously transmit the power signal to a 

mobile receiver moved manually along the area divided in grid table. The grid table of 

the area are both 5 meters long in an identical square with each 20 centimeters square 

for all sub-grids. The 20 centimeters displacement is the minimum distance of each 

time the mobile receiver needs to move to collect the RSSI data from all four of LoRa 

modules for further training in order to develop the corresponding model of ANN 
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according to that localized area. In some other existing localization experiments 

related to the use of wireless modules for indicating the positioning coordinates, there 

are also cases where only two modules are enough to conduct the indoor localization, 

but the best practical approach is recommended to use at least three modules as a 

minimum requirement similar to the concept of global positioning system (GPS). 

However, this research uses four modules to increase the performance and accuracy 

of the obtained signal from the receiver for the correct analysis in ANN tool. 

Nevertheless, there are three major factors involved in this experiment displayed in 

Table 6, including signal intensity and surrounding environment. 

 

Table 3.1 The Definition of Major Factors Initially Managed in this Reseawrch 

No. Factor Description 

1 Independent variable intensity of the signal 

2 Dependent variable correctness of the signal intensity 

3 Controlled variable the controlled environment in experiment 
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Figure 3.1 The overview flowchart shows the overall process of this research 
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Figure 3.2 The diagram illustrating conceptual design of the intelligent indoor 

localization 

 

 The experiment process could be categorized as two major processes and 

their sub-processes shown on flow charts in Fig. 42. According to the proposed flow 

chart on the left-hand side, the first flow chart displays the sub-processes involve with 

the data collection as dataset for training and optimize the corresponding model of 

ANN. On the other hand, after obtaining the trained model, the ANN model has been 

tested and performed in actual prototype localization system. After completing the 

assembled system of wireless LoRa-based module for both transmitter and receiver 

and the controlled area prepared for experiment the intelligent indoor localization. In 

Fig. 43, the illustrated diagram has been depicted as to provide the overview of 

designed end-to-end system of the LoRa-based localization application. As shown in 

the figure, all four transmitters emit the signal in term of RSSI all the time from their 

stationed positions to the moving receiver dedicatedly for recording the varied data 

from each corresponding coordinate along the grid table of the floor. The received 

data has been recorded in CSV file within the excel software, and then the MATLAB 

toolbox import those data into its program for training the ANN function associating 

with those contexts. The aforementioned process is, in fact, done in the portable PC 

laptop connecting to LoRa-based receiver through serial communication with USB 

port. After all the pre-configuration and ANN training have all been accomplished, 
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the conducted system will then be operated again in the prototype situation of the 

same controlled area in order to obtain the result, and that result will be further 

verified its performance and correctness afterwards. 

 

3.3 Modeling, Data Collection, and Simulation 

 Refer to the modeling of ANN, the research uses MATLAB with ANN 

toolbox for creating the ANN model and perform the simulation within the program.  

 As depicted in Fig. 44, the grid.   

 

Figure 3.3 The graphical localized area depicts divided grid with association with 

LoRa modules 

 

Table 3.2 The Validation and Test Data of Neural Fitting of Ann 

Process Percentage of Usage Quantity of Samples 

Training 80% 502 samples 

Validation 10% 62 samples 

Testing 10% 62 samples 

 

area has been divided into 25 steps – every 20 centimeters of the whole 5 meters – for 

both side of X-axis and Y-axis. In short, the receiver needs to move for about 225 

steps in order to gain the total RSSI samples of each coordinates within the localized 
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field. Then the data corresponding to each coordinate are imported in to the ANN 

toolbox in MATLAB in order to train the model to work well with the situation. In 

this case, this research deployed 80% of the total samples for training, 10% for 

validation, and the other 10% for testing as indicated in the table 7. 

 The Fig.3.4 displays the scenario where the inputs including relating RSSI 

and its coordinates to the neural network training tool, which comprises of Simulink 

and block parameter to adjust and configure the ANN model. The inputs are included 

of four sets of RSSI data and two additional axises of X and Y. For the architecture 

model of ANN, the model is practically the two-layer feedforward neural network 

with Levenberg-Marquardt algorithm. 

 

 

 

Figure 3.4 The example of ANN tool performed in MATLAB platform 

 

3.4 Model Validation and Test 

 The research mainly focuses on testing the system performance through 

ANN simulation rather than implementation with actual mobile receiver in order to 

validate the accuracy of the system again. Straightforwardly, the validation and test 

are inspected using the ANN model as mentioned previously from the prior topic that 

only 20% of the total samples are used to validate and test the reliability of the system 

in terms of both performance and accuracy. 
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3.5 Main Tools used within the Experiment 

 Hardware List 

 3.5.1  LoRa-based transmitter module – 4 sets 

           The overall modules of the senders are identical in configuration and 

are essentially used as fixed at each position of the coverage area transmitters to emit 

the RSSI to the targeted receiver that move around the field. 

  3.5.2  LoRa-based receiver module – 1 set 

            The receiver designed to move around the coverage area of 

localization system as for receiving the RSSI data from all transmitters at each 

coordinate of the grid. The receiver is manually moved along the entire area to gain 

the information. 

  3.5.3  Portable PC laptop – 1 set 

            The PC laptop is to manage the system and collect the received data 

while performing and testing the experiment. Moreover, all the records are kept in 

form of CSV file and used to train the ANN model within the software here as well. 

 

 Software List 

 3.5.4  Arduino IDE software 

            Arduino IDE software is for programming the script to communicate 

with both the LoRa-based transmitters and the sole receiver. 

  3.5.5  Math work MATLAB software 

            The ANN toolbox from MATLAB has been utilized to model the 

feedforward neural network from training data gathering by the PC laptop. The 

parameter of the ANN model can be configured, and the training process is also 

performed here on ward. 
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Chapter 4 

Result and Discussion 

 

4.1 End Device Design 

       A. Circuit and System Designs 

             The proposed LoRa module has been designed as a stand-alone device, 

which can be equipped with another microcontroller. Fig.46 shows the block diagram 

of the proposed LoRa End-Node. It can be seen from Fig.46 that the end-node 

comprises a LoRa Module with built-in an antenna. This LoRa module is connected to 

the Arduino Pro-Mini that processes all signals both inputs and outputs. The power 

supply system is a Lithium-Ion Batter (3.7V) that is connected to a battery charger 

module TP4056. The TP4056 module become the power supply in order to step-down 

the 3.3V voltage regulate module. 

 

SPI

4
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Circuit

Li-on Battery
(3.7V)

Step-Down Voltage 
Module 

(c) Power Supply Management Unit

3.3-V DC Voltage
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220-V 50-Hz
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Figure 4.1 Block diagram of LoRa module equipped with Arduino Pro-Mini, and 

Regulator, and a built-in 
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Table 4.1 Technical Specification of Circuit Modules 

Circuit Modules Specifications 

LoRa Chip 168 dB maximum link budget 

+20 dBm - 100 mW constant 

SX1276/77/78 RF output vs. Supply 

+14 dBm high efficiency PA 

Programmable bit rate up to 300 kbps 

High sensitivity: down to -148 dBm 

Bullet-proof front end: IIP3 = -11 dBm 

Excellent blocking immunity 

Low RX current of 9.9 mA 

FSK, GFSK, MSK, GMSK, LoRaTM and OOK  

127 dB Dynamic Range RSSI 

Antenna  

ANT-RA57-915 

890-915MHz, Center Frequency at 915 MHz 

2-dBi Gain 

VSWR ≤ 2 

Vertical Polarization 

50-Ω Impedance 

Arduino Pro-Mini 

MEGA328P 

Operating Voltage at 3.3V or 5V 

14 Digital I/O Pins and 6 Analog Input Pins  

Flash Memory of 32kB  

SRAM of 2 kB  

EEPROM of 1 kB  

 

 

 

 

 

 

 

 



77 

 

 

Figure 4.2 The radiation pattern of an antenna; (a) H-Plane, (b) E-Plane 
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Charging Circuit Step-Down Regulator

Arduino Pro-Mini

Power Terminals  

 

Figure 4.3 The assembled two-layer circuit prototype of the LoRa-based communication 

module with built-in monopole antenna 

 

 Table 4.1 summarizes technical specifications of circuit modules. The LoRa 

is apparently not only offers high efficiency of +14 dBm but also minimizing current 

consumption of 9.9 mA. In particular, the LoRa module provides high dynamic range 

RSSI of 127 dB with whilst excellent blocking immunity, which is suitable for indoor 

localization. It is also seen in Table 8 that the antenna is a typical for LoRa 

communication at a center frequency of 915 MHz and the gain is 2-dBi with a 

maximum Voltage Standing Wave Ratio (VSWR) of two. In accordance to the 

antenna, Fig. 47 depicts the radiation pattern of an antenna both in H-plane and E-

plane. As the polarization is vertical, the directivity in H-plane provides a full gain of 
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approximately 40 dBi in all direction whilst the gain drops to zero for E-plane at 0O. 

The experiment shall be carefully considering a vertical polarization in order to 

receive a RSS properly. Finally, Table 8 also indicates that the Arduino Pro-Mini 

MEGA328P was chosen as a processing unit with 14 digital I/O pins and 6 analog 

input pins and sufficient memory for application in indoor localization, i.e. Flash 

Memory of 32kB, SRAM of 2 kB, and EEPROM of 1 kB. Fig. 48 illustrates the 

assembled two-layer circuit prototype of the LoRa-based communication module with 

built-in monopole antenna. As for experiment on indoor localization 5 boards were 

assembled, four of which will be employed as APs and one for RP. 

 

4.2 Indoor Measurements   

       Evaluations of Reliability of LoRa Communications  

       Preliminary evaluation of the LoRa communication module was conducted 

at Thai-Nichi Institute of Technology where the gateway was installed at the 6th floor 

of C-building with a height of 550 meters. Fig. 49 shows a physical map for testing 

signal strength with an increment of 100 meters. The performances were investigated 

by RSSI, which is usually expressed in dBm from 0 to approximately lowest at -120 

dBm. In addition, Signal-to-Noise Ratio (SNR) defined as the ratio of signal power to 

the noise power has also been investigated. Fig. 50 shows plots of measured RSSI in 

dBm and SNR in dB versus a distance. The RSSI decreased from 0 to around -90 

dBm within the first100 meters. From the distance of 100 meters to 500 meters, the 

values of RSS decreased from -90 dBm to approximately -100 dBm before signal lost. 

Meanwhile, the SNR is positive till the distance of around 160 meters and the SNR 

was then decreases to -18 dB at 500 meters. Such results indicate that the LoRa 

communication is reliable with satisfied SNR values for further implementations. As 

mentioned earlier, the width and length of a floor are 15m. and 15m., respectively. 

Therefore, the overall performance is sufficient for indoor localization implementation. 
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Figure 4.4 Test for signal strength coverage area at C-Building of Thai-Nichi Institute 

of Technology 
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Figure 4.5 Plots of RSS versus a distance for one-to-one communication tests 
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Figure 4.6 ANN-Based Indoor Localization with output processing system 
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Figure 4.7 Examples of a received RSS in dBm of the four APs in time-domain 

 

4.3 Simulation Results   

       Experimental Results for Indoor Localizations 

       The proposed indoor localization system has been conducted based on the 

system model depicted in Fig.55. First, a one-to-one communication using two LoRa 

modules was investigated in terms of RSS for evaluating a characteristic curve of RSS 

values versus a distance as shown in Fig. 50. The plots reveal that the values of RSS 

decrease from -40dBm to approximately -120dBm over an entire distance range of 15 

meters. The characteristics is relatively linear with sufficient different in RSS values, 

and therefore it can be concluded that the utilization of RSS from LoRa technology is 

applicable for indoor localization within 15 meters. 

        Second, each of location in the coverage area was recorded as a fingerprint 

database, and it was trained by ANN. Fig. 51 shows ANN-Based Indoor Localization 

with output processing system.  

        The system comprises 255 modules of trained ANN in order to distinguish 

each location where the output system determines the location. The ANN is a back 

propagation and each block was trained with customized number of hidden nodes 

with a golden error of less than 10-3. Activation functions of a hidden layer is a 

sigmoidal function while the output function is a piecewise-linear function, i.e. f(x) = 
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0 for x<0, f(x) = 0 for 0<x<1 and f(x) = 1 for x>1. The output activation function 

assists a precise location on the area of experiments.  

         Third, Fig. 1.8 depicts Examples of a received RSS in dBm of the four APs 

in time-domain at a particular location. It can be seen in Fig. 52 that the RSS are 

relative different. As a result, Fig. 53 illustrates correct and wrong indoor localization 

over 15 m2. There are 11 locations that the proposed system cannot be localized and 

there in a middle of an area. This is because of close values of RSS received from the 

four APs. Therefore, the error is 4.88%, yielding the accuracy of 95.22%. 

 

 

 

Figure 4.8 Results of correct and wrong indoor localization over 15 m2 

 

4.4 Positioning Algorithm   

       In RSS-based algorithms, the tracked target measures the signal strength for 

received signals from multiple transmitters in order to use signal strength as an 

estimator of the distance between the transmitters and receivers. This way, the 

receiver will be able to estimate its position relative to the transmitter nodes. Although 

RSS is sensitive to multipath interference and a small-scale channel effect that causes 
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a random deviation from mean received signal strength, it is used frequently with 

unrealistic assumptions. For example, the transmitted power and path loss exponent 

are already known, and the transmitter antennas are isotropic [64,65]. According to 

Pittet et al., the accuracy of RSS for non-line-of-sight (NLOS) and multipath 

environment is low, which shows clearly that RSS is not the right estimation method 

for indoor positioning systems [66]. Gigl et al., explored the performance of RSS 

algorithms for positioning using UWB technology [67]. They also studied the effect 

of small-scale fading on the system accuracy; however, a simulator based on the 

UWB channel model 802.15.4a was used to evaluate the algorithms rather than 

relying on real scenarios for indoor environments. Leininger et al., used maximum 

likelihood estimator as well as floor plan information to improve positioning in the 

existence of diffuse multi path for the NLOS environment [68]. 

       This thesis therefore studies an indoor localization technique through the 

utilization of Received Signal Strength Indicator (RSSI) of LoRa Technology. The 

methodology employs five sets of LoRa nodes and four of which were utilized as 

statistic nodes, radiating a signal power from 2-meter high from the floor. The 

receiving node is placed in a particular coordinate on the floor. The RSSI values were 

employed as inputs for Artificial Neural Network (ANN) for estimation of the 

coordinate of the receiving node. The LoRa frequency is 915 MHz and the 

microcontroller are Arduino Pro-Mini that processes all signals with Lithium-Ion 

Battery. 
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Figure 4.9 A generic visualization of indoor positioning techniques with three base 

stations, demonstrating both RSSI and time stamped packets 

 

4.5 Reviews on Typical Indoor Localization Approaches 

       Several wireless technologies have been realized for indoor localization 

approaches, depending on performances and also limitation of mathematical models 

for location estimation. Typically, major performance metrics associated with 

localization systems involve the following areas, i.e. (i) an accuracy that can be 

described as an error distance between estimated and actual locations, (ii) The 

responsiveness that determines speed of updating time of estimated location, (iii) 

coverage that determined the network coverage under a designated area of 

localization, (iv) adaptiveness which refers to an ability of the localization system to 

cope with environmental influence changes that affect to overall system 

performances, (v) Scalability in which a localization system can potentially operates 

with a larger number of location requests and a larger coverage, and (iv) cost and 

complexity, which are on of practical concerns, involving  extra infrastructure, 

additional bandwidth, money, lifetime, weight, energy, and nature of deployed 

technology. Based upon the above-mentioned performances and suitability of 

localizing environments, this paper particularly summarizes indoor localization 

approaches with two categories, i.e. proximity and triangulation [69-70]. 
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4.6 Proximity Detection Approach  

       Proximity detection is the simplest positioning method for implementing 

localization of a target. This method provides relative position between a target and a 

cell of origin, such as GSM, RFID, or Bluetooth, with known position and limited 

range. Typically, this method detects the target via the nearest position where the 

strongest signal is received.  In recent years, this method has been deployed using 

beacon with short-range communications. However, the proximity-based method has 

a high variance which may not satisfy the need for localization.  

 

4.7 Triangulation 

       Triangulation utilizes geometric properties of triangles to determine the 

target location, which typically has two derivations, i.e. angulation and lateration. On 

the one hand, angulation method refers to as Angle-of-arrival (AoA) method which 

determines the angle of arrival of the signal receiving from a known location at which 

it is received at multiple base stations. Geometric relationships can subsequently be 

utilized in order to estimate the location of the intersection of line angles. Although 

the angle of signal can be retrieved straightforwardly through directional antenna 

technology, the angle of stations may not exactly be the angle of received single due 

to the existence of multi-path and environmental reflections. 

       On the other hand, lateration method refers to a position determined from 

distance measurements obtained from multiple reference points. Fig. 54 demonstrates 

a generic visualization of indoor positioning techniques with three base stations, 

demonstrating both time stamped packets and RSSI. It can be considered from Fig. 54 

that lateration methods can be classified into two types, including (i) time-based 

triangulation, and (ii) RSSI-based triangulation. General techniques for time-based 

triangulation are generally Time-of-Arrival (ToA) which directly measures time 

stamped packet transmitted from base stations or versa vice. Meanwhile, Time 

Difference of Arrival (TDoA) is a measure between multiple pairs of reference points 

with known locations and exploits relative time measurements at each receiving node 

in place of absolute time measurements. Besides, Received Signal Strength (RSS) as 

also shown in Fig. 54 has been used to represent received signal property. The 
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distance can be obtained and the location can be calculated based on by receive signal 

strength property. 

 

4.8 Received Signal Strength 

       Received Signal Strength Indication (RSSI) typically refers to as a 

measurement of the power existent in a received radio signal. The RSSI values are 

generally measured in dBm and have typical negative values ranging from 0 to 

approximately -120 dBm, which is a noise floor. As wireless Radio Frequency (RF) 

signals traverse air, a number of effects, such as noises and air resistance, directly 

affect signal degradation, resulting in attenuation of a received power. Based upon the 

standard definitions of terms for antennas, i.e. IEEE Standard 145-1993, the Free-

Space Path Loss (FSPL) can be modeled as 
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where PR is a received power, PT is a transmitted power, GR is a transmitting 

antenna gain, GR is a receiving antenna gain, λ is a signal wavelength, and d is the 

distance between the two antennas. Eq. (4.1) can also be described in Decibel (dB) as 

follows.  
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       It should be noted that real model of (4.2) should involve a signal loss 

caused by shadowing effect, which is a result of fluctuations in measurements due to 

various disturbances such as interference from transmissions, weather effects or 

scattering. This paper therefore proposes the RSSI-based triangulation through the use 

of fingerprint database technique for indoor localization. 
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Figure 4.10 System model geometry and area coverage, involving four APs and a 

single target in a reference point RP/Q 
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Figure 4.11 The overall architecture of the proposed RSSI-based indoor localization 

using LoRa technology with fingerprinting database 

 

4.9 Proposed Rssi-Based Indoor Localization Using Lora Technology with 

Fingerprint Database 

         Fig. 4.11 depicts system model geometry and area coverage, involving four 

APs and a single target in a reference point RP/Q. The designed system employs four 

Access Points (APs) which are all LoRa transmitters. A single receiving module RP/Q 
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is also a LoRa receiver located at a particular Reference Points (RPs). The width and 

length of a floor are 15m. and 15m., respectively, and hence the area is 225 m2. The 

height of those four APs is 2m.  The coordinate (x, y) is 1m2. Fig.56 shows the 

overall architecture of the proposed RSSI-based indoor localization using LoRa 

technology with fingerprinting database. It can be considered from Fig.56 that 

location fingerprinting comprises off-line and the on-line phases. The off-line phase 

constructs a map for the targeted area, and coordinates of RPs are designated. 

Subsequently, RSS values received from each RP from all APs are collected and 

stored in a fingerprint database. In the on-line positioning phase, the unknown 

position of a target is estimated Artificial Neural Network (ANN) which has been 

trained by a fingerprint database. In this paper, RSS probability distributions of all 

APs at all RPs are required to be stored for training ANN. The fingerprint of the ith 

RPs can be defined as follows. 
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where An, n=1···N, is the nth of AP, T is the measurement of RSS, Li is ith RP, and P 

can be expressed as follows. 
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where Ni is the total number of training samples collected at the ith RP, and CTm is 

the number of Tm appearing in the training data at the ith RP. Consequently, the 

fingerprint database D is given by 
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where w is the total number of RPs in the coverage area. In addition to fingerprinting 

database, this work alternatively employs ANN instead of other common techniques 

such as database matching or search algorithm. The supervised learning ANN with 

Back-Propagation Learning Algorithm was chosen for training the database D. Fig. 4 

shows the structure of a realized ANN for determining the location of an output 

coordinate (x, y). It is apparent in Fig.4 that the four inputs are RSS1 to RSS4, which 

are normalized to be in a region of (0, -1) dBm. The optimized hidden layer comprises 

30 nodes and the two output nodes provide the coordinate (x, y). 

 

 

 

 

 



89 

Chapter 5 

Conclusion 

 

5.1 Conclusion 

       Low–Power, Wide-Area Networks (LPWAN) are projected to support a 

major portion of the billions of devices forecasted for the Internet of Things (IoT). 

LoRaWAN™ is designed from the bottom up to optimize LPWANs for battery 

lifetime, capacity, range, and cost. A summary of the LoRaWAN™ specification for 

the different regions will be given as well as high level comparison of the different 

technologies competing in the LPWAN space. Indoor Positioning Systems uses 

sensors and communication technologies to locate objects in indoor environments. 

IPS are attracting scientific and enterprise interest because there is a big market 

opportunity for applying these technologies. There have been various previous 

surveys on indoor positioning systems. However, most of them lack a solid 

classification scheme that would structurally map a wide field such as IPS, or omit 

several key technologies or have a limited perspective; finally, surveys rapidly 

become obsolete in an area as dynamic as IPS. The goal of this thesis is to provide a 

technological perspective of indoor positioning systems, comprising a LoRa 

technology classify the existing approaches in a structure in order to guide the review 

and discussion of the different approaches. 

 Based on real-world application, a positioning device like GPS cannot be 

manipulated indoor, because signals between GPS receivers and satellites are blocked 

by building walls. Several indoor positioning approaches, therefore, are designed to 

eliminate such problem. The researcher realizes a key problem of AGV cars in order 

that when AGV cars are ordered for purchase, a magnetic stripe reader must be 

installed in the cars as a driving navigator. The cars move on right directions up to the 

magnetic stripe reader that detects directions or routes from the magnetic stripe 

installed on the plant floor. The problem found is that after the magnetic stripe is used 

for a period of time, it will wear out. As a consequence, there are frequent purchase 

orders for the new ones. Prior to a new one to be installed, the old one must be 

removed. Therefore, this is not only about too frequent replacement of the magnetic 
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stripe but also the waste of time and installation payment every time when such 

problem occurs. It leads to the discontinuity of manufacturing processes in industrial 

plants as it has to wait until the installation or the replacement is finished. This 

problem inspired the researcher to invent and develop an indoor wireless positioning 

system as solution of the traditional navigation system of AGV cars. 

 As a result, this thesis has introduced an indoor localization technique 

through the use of Received Signal Strength Indicator (RSSI) of LoRa Technology. 

The LoRa chip from SEMTECH has been implemented on a compact board with 

built-in antenna. The Arduino microcontroller was employed as a core processor with 

a step-down switching regulator. Five sets of LoRa nodes were implemented and four 

of which were utilized as statistic nodes, radiating a signal power from 5-meter high 

from the floor. The localization has exploited 255 modules of trained ANN in order to 

distinguish each location. The resulting error the error is 4.88%, yielding the accuracy 

of 95.22%. The result provides satisfactory accuracy and low-power operation as for 

an alternative. 

 

5.2 Suggestions and Recommendations        

       During the experimental process of this research, found that the Received 

Signal Strength is changed which might be coming from the voltage drop. After 

checking this root cause, there is occurred from the small battery that used to provide 

the energy. As a result, the recording of the signal strength decreases and the 

transmission device stops working. Thus, the antenna should be turned into the 

experimental area and consider the appropriate energy providing to eliminating this 

problem. 

 

5.3 Future works  

        The next propose for this research methodology has applied for indoor 

localization system especially for AGV cars because it is useful for, i.e. Facility 

Management, Street Lighting, Factories, Industrial Applications, Healthcare 

Applications, Airport Services Management, Smart Parking, and Smart Farm. 
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A.  Attachment Code 

             1.  LoRa Receiver 

                    #include <SPI.h> 

                    #include <LoRa.h> 

                    String inputString = ""; 

                    void setup() { 

                    Serial.begin(9600); 

                    while (!Serial); 

                    Serial.println("LoRa Receiver"); 

                    Serial.println("CLEARDATA"); 

                    Serial.println("LABEL,Time,Count,RSSI"); 

                    if (!LoRa.begin(915E6))  

                   { 

                   Serial.println("Starting LoRa failed!"); 

                   while (1); 

                   } 

                   } 

                   void loop() 

                  { 

 

                  int packetSize = LoRa.parsePacket(); 

                  if (packetSize) 

                 { 

                 while (LoRa.available()) 

                 { 

                 char reads  = (char)LoRa.read(); 

                 inputString += reads; 

                 } 

                 Serial.print("DATA,TIME,"); 

                 int rssi = LoRa.packetRssi(); 

                 Serial.print(inputString); Serial.print(rssi);  Serial.println(",");   

                 inputString = ""; 
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                 } 

                 } 

           2.  LoRa Sender Node 1 

                 #include <SPI.h> 

                 #include <LoRa.h> 

                 int counter = 0; 

                 String id = "1,"; 

                 void setup() { 

                 Serial.begin(9600); 

                  while (!Serial); 

                 Serial.println("LoRa Sender"); 

                 if (!LoRa.begin(915E6)) { 

                 Serial.println("Starting LoRa failed!"); 

                 while (1); 

                 } 

                 } 

                 void loop() { 

                 Serial.print("Sending packet: ");  Serial.println(id); 

  

                  LoRa.beginPacket();   

                  LoRa.print(id);  

                  LoRa.endPacket(); 

                  delay(656); 

                  } 

              3.  LoRa Sender Node 2 

                  #include <SPI.h> 

                  #include <LoRa.h> 

                  int counter = 0; 

                  String id = "2,"; 

                  void setup() { 

                  Serial.begin(9600); 

                  while (!Serial); 



102 

                  Serial.println("LoRa Sender"); 

                  if (!LoRa.begin(915E6)) { 

                  Serial.println("Starting LoRa failed!"); 

                  while (1); 

                  } 

                  } 

                  void loop() { 

                  Serial.print("Sending packet: ");  Serial.println(id); 

                  LoRa.beginPacket();   

                  LoRa.print(id);  

                  LoRa.endPacket(); 

                  delay(656); 

                  } 

                 void loop() { 

                 Serial.print("Sending packet: ");  Serial.println(id); 

                 LoRa.beginPacket();   

                 LoRa.print(id);  

                 LoRa.endPacket(); 

                 delay(656); 

                 } 
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