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 This thesis presents weak signal detection methods using Duffing chaotic 

oscillator. The dynamic characteristics and properties of Duffing chaotic oscillator under 

the detection mode are mathematically analyzed, including an existence of attractor, 

equilibrium points, Jacobian matrices, bifurcations, chaotic waveforms, and frequency-

domain spectrums. As the precision of the system depend on the parameter threshold 

value still unsolved and a small variation of parameter value may cause a dramatically 

change in the chaotic system behavior, this thesis has contributed two major significant 

research outcomes, including parameter optimization and hardware implementation of the 

Duffing chaotic oscillator. The proposed parameter optimizations aim to achieve the 

parameter robustness for circuit operation under weak signal detection mode through the 

comparisons of Kaplan-Yorke conjecture that quantitatively measures the system 

complexity. The optimized parameters of Duffing equation has been found and employed 

for the circuit implementation. The circuit implementation of Duffing chaotic oscillator 

has also been proposed with minimal components with band-pass filtered output and 

current measurement circuit. The circuit could potentially measure weak signals under 

noisy conditions through the phase-plane observation in the changes of chaotic attractor. 

The proposed weak signal detection method can be used as an alternative to cost-

effective weak signal detection systems in a variety of applications such as in fault 

location, failure monitoring systems, and communications systems. 
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Chapter 1 

Introduction 

 

This chapter introduces Weak Signal Detection (WSD) principles and 

methods. Some related techniques of weak signal detection methods are studied, 

including Stochastic Resonance (SR), a detection algorithm base on Wigner-Ville 

Distribution (WVD) and also a circuit implementation CW NMR broad-line 

spectrometer. Statement of problems, hypothesis, research scope and expected 

outcomes are also included. 

1.1 Weak Signal Detection 

Weak Signal Detection (WSD) has been extensively utilized in many signal 

processing fields such as communications, mechanical industry, medical science and 

military. In the industry area, fault detection in the incipient stage of failure appearing 

has been gaining importance in recent time, due to the fact that motors has widely 

applied in most industrial production. Through monitoring the states of asynchronous 

motor, weak signal detection can detect incipient failure and prevent the further 

deterioration of the fault and reduce the economic losses that the sudden fault causes, 

avoiding the threat to the staffs and equipment. It is the reason why diagnose reliably 

in the incipient failure and identifying the type of fault has great important practical 

value. In communication area, WSD system was widely implemented in electronic 

components including a communications receiver, radar, sonar and other areas etc.  

An existing problem encounter within a radio communications is the loss of 

signal in complex propagation environments such as large buildings, tunnels, 

basements, and collapsed structures. Signal strength was reduced due to attenuation 

through building materials can significantly hamper communication.In Medical area, 

noise always influences on the result of signal-detection. The detecting signal under 

the low signal-to-noise ratio (SNR) form body signals are widely observed medical-

signal detection field. However, it is an intractable problem of signal-detection to 

extract weak signal under a high noisy environment. Adaptation filter provides a 

simple and useful way to detect signal through the measurement and detection. The 
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possible method to extract the best combination of weak signal under the condition of 

weak signal, Wavelet Transform (WT) has been employed to detect the ECG signal. 

Furthermore, There have a number of methods were used to determine the weak 

signal detection methods such as (1) Stochastic Resonance (SR)[1], (2) A detection 

algorithm base on Wigner-Ville Distribution (WVD)[2] and (3) also a circuit 

implementation CW NMR broad-line spectrometer[3]. 

First, The Stochastic Resonance (SR) method is a phenomenon which small 

periodic signals immersed in large background noise can be detected. The most 

important quantifier for SR is the Signal to Noise Ratio (SNR) which passes through a 

maximum as a function of the noise amplitude for systems showing SR. Using the 

bimodal cubic-map, it is shown that SNR can be enhanced by a suitable coupling of 

two systems capable of SR. The classical SR deals with the detection of a single sub-

threshold signal immersed in noise. However, in practical situations a composite 

signal consisting of two or more harmonic components in the presence of background 

noise is encountered. For example, signals impinging on sensory neurons often have 

multiple discrete spectral lines, as in the case of human speech and musical tones. 

Moreover, two frequency signals are widely used in communications, laser physics 

and acoustics. As a preliminary model for such situations, the method is important to 

analyze how a typical bi-stable system responds to similar inputs and noise. The SR 

method can be used as an effective tool in signal transmission and in communication 

in noisy environments by using noise as a design parameter and tuning the 

background noise level. All the basic frequencies contained in a signal can be 

enhanced and separated out using suitable filters. 

Second, the detection algorithm base on Wigner-Ville Distribution is 

consisting of phase-space reconstruction technique and principal components 

analysis. The detection method of weak signals can be employed in noisy 

environments. With the algorithm, the frequency of the signal can be extracted even 

when the S/N reaches negative value and the FFT power spectrum shows no trace of 

its spectral characteristics. The signal detection scheme is insensitive to the nature of 

the background noise. The basic idea of the detection method is to transform, or map 

an input time series into a 2-dimensional image data in terms of the Wigner-Ville 

distribution (WVD). The choice of WVD is due to its optimum information-
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preserving property, and it results in the least amount of spread in the time frequency 

plane. The detection is then carried out by using the PCA to extract the features and 

MPL networks to classify the patterns. However, the method can be performed with 

the maximum SNR at -25dB.  

Last, In terms of circuit implementations, Spectrometer was introduced for 

weak signal detection by using nuclear magnetic resonance (NMR). The NMR 

absorption line in a differential form is detected by a repetitive oscillator frequency 

sweep and requires the static magnetic field to be run at a fixed value in the duration 

of the multiple pass experiment, i.e. for a period of days, by the reason of the signal-

to-noise ratio is quite small and signal averaging is necessary. The oscillation level 

has to remain constant during the sweeps and large sweep amplitudes may be 

employed even at low oscillation levels. Since the spin-lattice relaxation times in most 

solids are very long, the low levels of radio frequency excitation must be maintained 

for the NMR in order to avoid saturation of the specimen while sweeping through the 

resonance region. The shape of a resonance line can be disturbed due to the 

instabilities of both the frequency and amplitude of the radio frequency field. A new 

solution in constructing the CW NMR measuring apparatus, by involving the using of 

the computer controlled PLL frequency-sweep NMR oscillator. The oscillator circuit 

of the spectrometer is considerably less sensitive to unwanted noise nuclear 

susceptibility component even in case of a very small signal-to-noise ratio, when the 

signals averaging is necessary. Nonetheless, Spectrometer has not widely been 

utilized due to the large circuit implementation, complicate techniques, and also high 

application cost. 

In recent years, the principle of this WSD method based on chaotic oscillators 

was proposed as a new method for detection. A system parameter of the Duffing 

oscillator has a threshold. Around the threshold there is a state of conversion from the 

chaotic to the periodic and a monotonic functional relation between the system 

parameters and the characteristic of parameters which can be described the system 

state. Furthermore, it has been seen no effect with the strong background of noise 

which is namely ‘immunity’ to noises. In measurement, the system parameters will be 

adjusted to the threshold in order to process the system as the critical state. 

Consequently, the weak periodic signal is driven into the system as small 
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perturbations through the system amplitude of a driving parameter. The parameter can 

be measured by the function relation. WSD method based on Duffing oscillator 

contains six parts which are detection task, detection system, detection conditions, 

chaos criterion, method improvements and method realizations. The Detection task is 

to measure parameters of the periodic signal to be detected. Such parameters include 

amplitude, phase and frequency. The periodic signal types include harmonic wave 

signal, square wave signal, triangle wave signal and short-impulse signals. The 

amplitude to be measured input is as small perturbation to system parameter.In the 

detection system, chaotic oscillator whose equation form is different would have 

different detection performance. In the additional forcing terms, the detection 

performance is determined by the form of non-linear terms in chaotic oscillator 

equation. Signals contain the different frequencies can be detected by transform ‘

t  ’  where  is a time in second,  is the angular frequency in rad/second and  is 

time-scaling parameter  on the equation in time scaling terms.The detection condition 

includes noise condition and initial condition where noise condition means noise type 

and SNR.  

The WSD method based on chaotic oscillator generally requires noise are 

zero-average, additive, stationary, Gaussian or ‘white’, the noise sometimes can also 

be non-Gaussian or ‘color’ noise. Color noise can be obtained as output by inputting 

white noise to the fourth-order band pass filter. As an index of detection performance, 

the SNR is generally required less than -10dB. Experiment method and method of 

statistically analyzing for the oscillator equation as stochastic differential equation. 

Chaos criterion is about identifying and describing state of chaos system. Chaotic 

state can be identified by phase trajectory approach which is based on analyzing phase 

trajectory as output of chaos system. It contains approaches of visual identification by 

phase figure, time series analysis, Poincare’ section and power spectra analysis. The 

threshold of Duffing oscillators are determined analytically by Melnikov method. The 

range of chaos belts was theoretically predicted with different parameters, which is 

proved by the results of numerical simulations. The rule of the influence of systemic 

parameters (including amplitude and frequency of the external excitations, initial 

condition) to system behavior is deduced from a number of the experiments. In the 

realization method, Hardware realization of WSD method based on chaos oscillator 
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Table 1.1 Summary of particularly related techniques of weak signal detection              

      methods using chaotic Duffing oscillators 

Refs. Proposed WSD 

Methods 
Advantages Method Weakness 

[1] Stochastic Resonance 

(SR) 

Noise tuning. Require  more 

additional filter 

[2] Detection algorithm base 

on Wigner-Ville 

Distribution 

Detection can be perform 

for multi-frequency 

Data loss. Low SNR 

[3] Spectrometer sensitive to unwanted 

noise 

the large circuit and 

high application cost 

[4] Duffing Chaotic 

Oscillators 

immunity to noise, multi-

frequency and detected 

signal 

Variation in  system 

parameters and 

Nocircuit 

implementation 

 

includes chaos measurement circuit and sometimes DSP is used. Method 

improvement, WSD method based on chaos oscillator can be combined with 

traditional WSD method such as correlation method, cross spectra method, Boxcar 

Intergraph and lock-in amplifier (LIA). 

Since there are numbers of experiments lead to chaotic Duffing oscillators. 

However, the study is limited to theory, method, simulation experiment condition and 

result. The experiment has no concrete process and cannot be repeated and proved by 

researchers. The corresponding application and effect are unknown. Chaos detection 

model used in the experiment and the phenomena are not specifically analyzed with 

the chaos theory leading to a low number of technology implementation innovations. 

In practical, orderly and universal conclusion is not concluded. The realization of 

quantitative method and system precision validity and characteristic are seldom 

studied. The author has observed such a number of researches in chaotic Duffing 

oscillator gap leading to the thesis motivation. 
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1.2 Motivations 

Weak signal detection is a challenging topic in signal detection field. There 

are number of major motivations that have led the author to the research and 

development in this thesis.  Due to the high demand in mechanical industry 

measurement, weak signal detection has been employed as a tool to detect an 

Acoustic Emission (AE) in order to exam the corrosion of cutting tools in metal 

cutting process ,a corrosion in reinforced concrete structures and in the fuel pipes line. 

Especially, for recently problem in advanced applications of AE technology with 

high-cost and the imperfections of the technical terms such as the buried of noise in 

the detected signal. 

In chaos scheme many studies only solve a problem in a special measurement 

condition with random situations, and the complete measurement method system and 

its theory base have not been developed, The experiment conditions are too ideal 

without noise influence for example, which make the results and effect very good and 

the method is unusable in detection. Inspiring the author to develop the potential 

application which immune to noise and sensitive to weak signal emission and extract 

the underlying (high-accuracy) model in Weak Signal Detections in all involving 

parameters, research in the combination from chaos theory until the hardware 

implementation and also generalize the form of Duffing chaotic oscillator. 

 

1.3 Statement of Problems and Hypothesis 

Recently, the chaotic oscillator has been proposed and investigated for 

detecting weak signal in the presence of the strong noise. The precision of the system 

depend on the parameter threshold value still unsolved. Even a small variation of 

parameter value may cause a dramatically change in the chaotic system behavior. It 

has been the curiosity to extract the underlying model in Weak Signal Detection and 

simplify the generalization forms of Chaotic Duffing Oscillator in Weak Signal 

Detection with high-accuracy application circuit may lead the better result. There is 

also no circuit implementation using chaotic Duffing oscillator. 
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1.4 Objectives 

1.4.1To perform the mathematical analysis and parameter optimizations of 

Duffing oscillator. 

 1.4.2To design the weak signal detection methods with the chaotic Duffing 

oscillator with high    accuracy and low SNR. 

  1.4.3 To implement the electronic WSD circuit and system using chaotic 

oscillator. 

 

1.5 Research Scopes 

This thesis has been researched in three major parts which consisting of the 

Chaos theory analysis, system simulations and circuit implementation. 

 1.5.1  Study in chaos theory, dynamical system, and nonlinear analysis 

through the mathematical equation system such as dynamic equation, time-scaling 

model, Eigen value, Eigen-Vector, Jacobian-Matrix and also Stability analysis. Study 

in chaotic indicators such as attractor, time-domain, Poincare’ section, Bifurcation, 

Lyapunov diagram and Kaplan-York dimension. Thesis also integrates the model of 

chaotic Duffing oscillator by generalize the form of the Duffing oscillator equation. 

1.5.2   Study the method to determine the chaotic Duffing Oscillator systems 

through the parametric excitation method and additional forcing terms. Optimize the 

entire parameters in Duffing equation of damping ratio, Small driving amplitude (0-

1V.) and also of the parameters deviations. Characterize the dynamic behaviors and 

bifurcation boundaries through the use of a positive Lyapunov diagram and a 

dimensionless Kaplan–Yorke dimension (DKY) in Matlab simulation program. 

1.5.3  Implement the Chaotic Duffing circuit by using circuit board and 

electronic complex devices. 

 

 

 

 

 

 



8 
 

1.6 Expected Outcomes 

 1.6.1 To gain the knowledge of Chaos theory and dynamical systems. 

 1.6.2 To gain the knowledge of Weak signal detection methods using 

Duffing chaotic oscillator. 

 1.6.3   To perform the mathematical analysis and parameter optimizations of 

Duffing oscillator. 

 1.6.4 To generate the weak signal detection methods with the chaotic 

Duffing oscillator with high accuracy and low SNR. 

1.6.5   To create the electronic WSD circuit and system using chaotic 

oscillator. 
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Chapter 2 

Literature Reviews 

 

This chapter describes a number of the related theories and experimental result 

of weak signal detection and measurement such as Chaos theory and dynamical 

system, an existing of differential equations with chaotic behaviors including Lorenz 

systems, Rössler systems and Chua’s systems, Chaos Theory and Weak Signal 

Detection in the six related methods, Weak Signal Detection Method Base on Duffing 

Chaotic Oscillator and also the circuit implementations.  

2.1  Chaos Theory and Dynamical Systems 

Chaos is a term to describe a behavior of dynamical systems that appears 

closely to random, underlying with mathematical order in the dynamic system. Chaos 

is normally occurs in nature, however, the chaotic characteristic still confuse with the 

random behavior. Chaos can occur only in nonlinear systems and characterized by a 

breakdown of predictability known as sensitive dependence on initial conditions 

which is the most important distinguishing feature of chaos. This implies that even 

though chaotic systems are deterministic (unlike systems exhibiting random 

behavior), even the smallest difference in initial state can cause a dramatically 

difference in the final state. The chaotic behavior generally described as “the butterfly 

effect” where the flapping of a butterfly’s wings in may lead to a radical change in 

weather in the difference side of the world. Long term predictability of chaotic 

systems is impossible since all numerical calculations have a finite non-zero error 

which will diverge over time and the predictions unreliable. The chaotic behavior 

contain three majors properties , Chaos can occur only in deterministic nonlinear 

dynamical systems, Chaotic behavior looks complicated and irregular but has an 

infinite number of unstable periodic patterns embedded in the system and Chaotic 

behavior is sensitive to initial conditions 

Dynamical systems are the study of the long-term behavior of evolving 

systems. The modern theory of dynamical systems originated at the end of the 19th 

century with fundamental questions concerning with the stability and evolution of the 
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solar system. Attempts to answer those questions led to the development of a rich a 

powerful field with applications to physics, biology, meteorology, astronomy, 

economics, and other areas. By analogy with celestial mechanics, the evolution of a 

particular state of a dynamical system is referred to as an orbit. A number of themes 

appear repeatedly in the study of dynamical systems such as properties of individual 

orbits, periodic orbits, typical behavior of orbits, statistical properties of orbits, 

randomness vs. determinism, entropy, chaotic behavior and stability under 

perturbation of individual orbits and patterns. Normally, the dynamical systems can 

be written in the system of mathematically equations that describe how each variable 

changes with time as follows; 

1
1 1 2 3

2
2 1 2 3

1 2 3

( , , ,..., , )

( , , ,..., , )

( , , ,..., , )

n

n

n
n n

dx
f x x x x t

dt

dx
f x x x x t

dt

dx
f x x x x t

dt







    (2.1) 

Where n  species are given by 
1( ..., )nx x  and the right side of each equation is a 

function of  
1( ..., )nf f  that indicated the variables changes with time.  

2.2  Differential Equations with Chaotic Behaviors 

2.2.1  Lorenz System 

In 1961, Lorenz has visited to Barry Saltzman of the Travelers Insurance 

Company Weather Center in Hartford, Connecticut, Lorenz was shown a seven-

equation model of convective motion in a fluid heated from below and cooled from 

above. Saltzman’s seven equations were themselves the reduction from a set of partial 

differential equations describing Rayleigh-B´enard convection, which the Saltzman’s 

equation study how heat rises through a fluid like air or water and reduced the system 

into three equations as follows; 
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x x y

y xz rx y

z xy bz

   

   

 

                 (2.2) 

The model is highly idealized of a fluid, the warm fluid below rises and the cool fluid 

above sinks, setting up a clockwise or counterclockwise current. The Prandtlnumber 

 , the Rayleigh (or Reynolds) number r and r, and b are parameters of the system. 

The variable x is proportional to the circulatory fluid flow velocity. If x >0 , the fluid 

circulates clockwise while x<0 means counterclockwise flow. The variable y is 

proportional to the temperature difference between ascending and descending fluid 

elements, and z is proportional to the distortion of the vertical temperature profile 

from its equilibrium (which is linear with height). For setting 10, 8/3b   Lorenz 

found numerically that the system behaves “chaotically” whenever the Rayleigh 

number r exceeds a critical value. The solutions appear to be sensitive to initial 

conditions, and almost all of them are apparently neither periodic solutions nor 

convergent to periodic solutions or equilibria.  

2.2.2  Rössler System 

The Lorenz systems have been studied in detail because it can be seen a 

treasure trove of an interesting phenomena. The system was the widely known chaotic 

attractor from a set of differential equations. The dynamical equations are simple; the 

various types of dynamical behavior can be seen for different parameter ranges. 

Subsequently, the others chaotic systems of differential equations have been identified 

such as Rössler systems, Chua circuits etc. In 1976, the German Scientist O. Rössler 

found a system which create a chaotic attractor with an even simpler set of nonlinear 

differential equations name “The Rössler systems” as follows; 

( )

x y z

y x ay

z b x c z

  

 

  

             (2.3) 

For the criterion of parameters a= 0.1, b= 0.1, and c =14, there is an apparent chaotic 

attractor, The Lyapunov exponents for this attractor have been measured by 

computational simulation to be approximately 0.072, 0 and -13.79. The corresponding 
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Lyapunov dimension is 2.005. Rössler primarily considered a slightly different set of 

parameters, a =0.2, b =0.2, and c =5.7, but the properties of the systems are not 

dramatically different for these values. 

 

2.2.3 Chua’s System 

In the 1980s, Leon Chua and colleagues developed a class of electronic circuit 

capable of exhibiting chaos with a wide range of behaviors. The system has been 

extensively studied by many researchers. The systems contain an RLC circuit with 

four linear elements (two capacitors, one resistor, and one inductor) and a nonlinear 

diode, which can be modeled by a system of three differential equations as follows; 

1 1x ay x x x

y z x

z y

     

 



                                   (2.4) 

wherea is the systems parameter and x, y, z are the systems variables. Chua circuits 

was widely utilized and continuously modified by a number of researchers in 

nonlinear terms. 

 

2.3  Chaos Theory and Weak Signal Detection 

Chaos theory for the detection of weak signals derived from the discovery of 

chaos in nonlinear dynamic system. The research of chaos theory indicates that 

certain nonlinear chaos systems have the sensitivity to small signal and the immunity 

to noise under the controlled condition, utilizing this characteristic, takes detecting 

signal as the driving force of the chaos system, although the noise is intense, it has no 

influence on system mode's change, however once has specific signal, even if signals 

amplitude is quite small, also make the system change. The computer recognizes 

system modes by the method of image recognition or envelope abstraction and so on, 

and then judges whether signal is exist, thus achieve the goal of detecting weak signal 

from strong background noise. The extreme sensitivity of the chaotic dynamic system 

behavior for the initial parameters results in to study it on weak signal detection. 

Especially, because of clear physical meaning and convenient debugging of Duffing 

oscillator, it became the source of weak signal detection research. 
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2.4 Weak Signal Detection Based on Duffing Chaotic Oscillator 

Weak Signal Detection (WSD) techniques have been utilized extensively for 

the detection of weak periodic signals under strong additive noises, i.e. low SNR [5], 

for various applications such as GPS signal detection [6], tool wear detection [7], 

down hole acoustic telemetry system [8], and EEG analysis [9]. Existing WSD 

techniques include, for example, a periodic signal relevant detection [10], a periodic 

signal-sampling-points integration [11], a single frequency-locked detection [12], and 

a linear filtering method [13]. However, these WSD techniques are relatively 

complicated; exploiting specific signal processing such as Fourier or Wavelet 

transforms in order to extract the desired signal embedded in strong noise 

circumstances, and also requiring complicated implementations of circuit and 

systems. The WSD technique based on chaotic systems has been suggested as an 

alternative to those existing WSD techniques due to the capability of detecting 

sensible signals and the immunity to noises under specifically controlled conditions. 

The chaotic system is typically a deterministic nonlinear dynamic system, which is 

highly sensitive to initial conditions and possesses unpredictable long-term behaviors 

[14]. Specifically, the class of non-autonomous chaotic systems offers high suitability 

for WSD since the dynamic behaviors depend on a periodic stimulus, which can be 

realized as a signal desired to be detected.  

In particular, Duffing oscillator has been employed considerably as the forcing 

signal can be detected efficiently although its amplitude is small. Two early 

approaches for realizing a detecting signal in Duffing oscillator include (1) the 

parametric excitation and (2) the addition of forcing terms. On the one hand, the 

parametric excitation approach uses an external signal desired to be detected as the 

forcing signal in the typical Duffing oscillator [15-16]. In the case where the 

parameters of an external signal satisfy the criteria of system dynamics, a chaotic 

attractor will exist apparently and the desired signal can therefore be detected by 

observing the existence of this attractor. On the other hand, the addition of forcing 

term approach primarily determines one internal forcing signal and its parameters are 

also set in such a way that the system dynamics is readily in a chaotic state, providing 

an apparent chaotic attractor [17]. The external weak signal desired to be detected is 
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subsequently added to the internal forcing signal, leading to the transition between 

periodic and chaotic states. The detection can be made by observing the changing 

aspects of an attractor. Recently, Melnikov [18] and Lyapunov [19] functions have 

been suggested in addition to those two approaches, which are mainly based on 

human observation on chaotic attractors. The Melnikov function provides a numerical 

threshold value from a Melnikov function plot in order to monitor chaos criteria, but 

the detection is still made by human observation. The Lyapunov function offers a 

quantitative measure of chaoticity through the positive Lyapunov Exponent (LE), 

avoiding human observation and improving the efficiency. Nonetheless, the positive 

LE depends on system parameters and can be designed as large as required through a 

linear time rescaling that has no effect on system dynamics [20]. The characterization 

and optimization of all system parameter are therefore necessary.  

 

Table 2.1Summary of particularly related techniques of weak signal detection methods  

     using chaotic Duffing oscillators. 

Ref. Years Techniques Proposed Equations 

[21] 2003 Recovery force terms 
3

5
[1 ( )] sin( )

T
x kx x aS t x t       

[22] 2005 LE Thresholds method 3
 + cos( ) ( )x x x x f t Z s      

[23] 2007 Effect of Amplitude 

Modulation(AM) by 

Bifurcation 

2 3

0
[ ( 2 cos )sin ]

x y

y x x x f g t t    



      
 

[24] 2010 Melnikov Function, 

Phase-Shift and 

Frequency Control  

3

2

1
( ) ( ) ( ) ( ) cos( )x x x x F

   


    

 
     

[25] 2011 
Wavelet Denoising 

Method 
3

( cos( ))

x y

y ky x x f



 



    
 

[26] 2011 Frequency Spectrum 3
0.5 0.825cos( ) 0.001cos( )x x x x        
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As shown in Table 1, Li Yueand Yang Baojun (2003) [21] have early 

proposedachaotic system for the detection of periodic signals under the background of 

strong noise and also proposed a new method to study the chaotic system for the 

detection of periodic signals in the presence of the strong background of noise 

through the modification of Duffing-Holmes equation.  

3 + sin( )x x x x t                                        (2.5) 

The author has modified the equation (1) by setting a periodic driving force as an 

invariable  and  transform the recovery force term to 3 5x cx  where 

1 ( ), 0
T

c aS t a   The equation can be transformed as follows; 

3 5[1 ( )] sin( )Tx kx x aS t x t                                (2.6) 

The result of the numerical experiments indicated that the chaotic system of the 

equation (2.6) is sensitive to the weak periodic signal mixed with a perturbation noise. 

The signal to noise ratio for the system can reach to about – 91 dB. 

 Chongsheng Li (2005) [22] has proposed a new weak signal detection 

methods based on Lyapunov Exponents (LE) by a model based on LE calculation and 

an improvement of LE calculation algorithm. On the one hand, the model based on 

LE calculation is used to determine the specification of the initial threshold value. On 

the other hand, the improvement of LE calculation algorithm is proposed based on 

phase space reconstruction of the observed data. The characteristics of the 

improvement methods have high precision of the LE threshold value and the 

automatic recognition. The simulation results verify the analysis and the effectiveness 

of this method. The proposed equation can be obtains as follows. 

  
3 + cos( ) ( )x x x x f t Z s            (2.7)          

The equation (2.7) can be analyzed by LE method. The analysis and simulation results 

show the chaotic characteristic criterion based on LE method has an advantage of high 

accuracy and easy implementation for setting the LE threshold value for adjust the 

periodic driving amplitude. 



16 
 

Ravichandrana , Chinnathambi and Rajasekar (2007) [23] have proposed the 

homoclinic bifurcation and its transition from regular to asymptotic chaos in Duffing 

oscillator  subjected to an amplitude modulated force in  both analysis and numerical 

experiment. Applying the Melnikov analytical method, the threshold condition for the 

occurrence of horseshoe chaos is obtained. The Melnikov threshold curves are drawn 

in different external parameters space. Analytical predictions are demonstrated 

through the direct numerical investigations. The Parametric regimes where 

suppression of horseshoe chaos occurs are predicted. Period doubling route to chaos 

intermittency route to chaos and quasi-periodic route to chaos are found to occur due 

to the amplitude-modulated force. The state equation can be show as follows; 

2 3
0 [ ( 2 cos )sin ]

x y

y x x x f g t t    



      
                 (2.8) 

The numerical investigations show the stable and unstable manifolds of saddle, 

maximal Lyapunov exponent, Poincare´ map and bifurcation diagrams are used to 

detect homoclinic bifurcation, the effect of the external force on horseshoe chaos and 

routes to asymptotic chaos. Melnikov analytical method was utilized in order  to 

obtain the threshold condition for onset of horseshoe chaos that is transverse 

intersections of stable and unstable branches of homoclinic orbits. Threshold curves 

are drawn on different parameters space. The author verified the analytical predictions 

through numerical simulation. The paper demonstrated the effect of the parameters f, 

g and Ω on the dynamics of the system. The homoclinic orbits of Duffing oscillator 

are driven by the sinusoidal force, sin( )f t   or cos( )f t  , exhibited one of the two 

possible behaviors depending upon the control parameters, The stable and unstable 

branches of homoclinic orbits are well separated and the Transverse intersections of 

stable and unstable branches of both W
+
 and W

-
.In the case of  the sinusoidal force is 

replaced by the AM force in addition to the possible behaviors the system shows 

additional features: transverse intersections of stable and unstable portions of  W
+
 

alone and W
-
alone. These two additional possibilities occur for the range of control 

parameters. Such range of parameters predicted by Melnikov method is numerically 

verified. The amplitude modulated force considered in the present work has four 
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parameters. The presence of additional parameters can be used to control and anti-

control of chaos.  

 Jian-xiong and ChulinHouwang (2010) [24] have proposed the Melnikov 

function to determine the threshold of system parameters in Duffing oscillator. The 

dynamical change of the system can be analyzed by the phase transitions in phase 

space diagram. Through analyzing the intermittent chaos mechanism of Duffing 

oscillator, the system output is a intermittent chaotic signal when input frequency 

deviates from the compulsory drive frequency slightly. The frequency deviation can 

be estimated by the statistic of output chaotic signal. The experiment results indicated 

that the weak signal detection method based on Duffing oscillator can detect weak 

sinusoidal signals with extremely low SNR and frequency to be detected. The author 

proposed an equation as follows; 

3

2

1
( ) ( ) ( ) ( ) cos( )x x x x F   


    

 
                         (2.9) 

Yusheng Sun et al. [25] (2011) have proposed a method of Weak signal 

detection based on Duffing oscillator by wavelet denoising method. The Simulation 

experiment shows that using joint measurement system to detect weak signal from 

high background of noise have more satisfy result. The author proposed the ability of 

detecting weak signal by using follows equations. 

3( cos( ))

x y

y ky x x f



 



    
                            (2.10) 

The method can detect weak signal in the low SNR with a high precision and strong 

ability to adapt. The author suggested the method is simple, intuitive and easy to 

implement.  As shown in table 1, AbolfazlJalilvand and HadiFotoohabadi (2011) [26] 

have proposed a method for identifying the chaotic state of the Duffing oscillator 

based on frequency spectrum analysis. The proposed method has three properties 

reasonable calculation of complexity, robustness to moderate noise amount and 

capability of detection with short signal sequence. The author proposed the equation 

as follows; 

30.5 0.825cos( ) 0.001cos( )x x x x         (2.11) 
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Table 2.2Summary of particularly related circuit of weak signal detectionbased on  

        circuit improvement 

Refs. Proposed Circuits Advantages Disadvantages 

[27] Signal correlation Simple and direct 

implantation 

Large circuits with two 

processing signals 

[28] Duffing Oscillator Good Small- 

amplitude signal 

detection 

Complicated circuit 

[29] Duffing Oscillators and 

control circuit 

Simpler circuit Vulnerable to 

components 

 

2.5 Circuit Implementations 

The conventional weak signal detection method is the transformation of non-

power signals to the power signals by the conversion circuits following with 

amplifying and filtering the transformed signals. The method is appropriate to the 

efficiently distinguishable output signals from the circuits, but in competent to the 

weak signals which frequency is low and also weak amplitude. Apparently, weak 

signals are usual the signals immense to the background of noises and the driving 

amplitude are relatively weak compared with the noises embedded amplitude 

.therefore, an efficient method is essential for the weak signal detection in information 

dealing, method of weak signal detection based on the signal correlation principle was  

introduced. Table 3 shows the summary of particularly related circuit of weak signal 

detection based on circuit improvement. In [27], the method principle consist of two 

stage parts, Signal modulation stage and a detection stage, the signal modulation is the 

certain characteristics of measured signals and  a reference signal. In order to obtain 

effective results of phase-sensitive detection, the reference signal should meet the 

condition of its frequency is 20 times of the measured signals ( )reference signal  . 

Thefrequency spectrum of the output signals is a frequency band between 
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.ref signal   and ref signal   from the modulated equation where Vmis the modulated 

signal. 

( ) 0.5cos( ) 0.5cos( )m ref signal ref signalV t t t                     (2.12) 

The demodulation procedure is realized by the phase sensitive detector. The essence 

is that the modulation signal is multiplied by the reference signal again where Vd is 

the demodulated signal. 

( ) ( )cosd m rV t AV t t
                                   

(2.13) 

 

This method can be implemented through relatively complicated circuits as shown in 

Figures 2.1 and 2.2. 

 

 

 

Figure 2.1The circuit diagram of signal generator using microcontroller [27]. 
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Figure 2.2The circuit diagram ofa phase sensitive detector [27]. 

 

 

Figure 2.3Circuit diagram of the Duffing oscillator suing multiple integrators [28]. 

 



21 
 

 

Figure 2.4Circuit diagrams of the chaotic oscillator and electronic switch [29]. 

 

The circuits designed based on the signal correlation principle distinguishes to 

the weak signal from the noises efficiently. Nonetheless, due to the large circuit lead 

user to high application cost.The traditional weak signal detection mainly uses the 

method of linear filtering and signal superimposition to extract the signal. However, it 

can be seen that such  methods often unable to detected signal when the background 

noise is strong and the detecting signal is weak, cannot meet the needs of weak signal 

detection requirements. Although modern detection methods have apparently effect, 

strong adaptability, but most of them have complex structure, difficult to achieve. 

Therefore, the weak signal detection technology has a new breakthrough when the 

chaos theory is introduced in the signal detection. The Chaos detection method is 
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different from a variety of existing measuring methods, which is a new signal 

processing method.Duffing oscillator simulation circuit has been introduce through 

sinusoidal voltage source, analog operational amplifier, analog multiplier, resistors 

and capacitors as shown showing in Fig3.all components are the ideal virtual 

electronic components. According to the basic feature of an ideal operational 

amplifier, system could easily derive the circuit equation of Duffing chaotic system as 

follows in Figures 2.3 and 2.4. 

In conclusion, WSD has been extensively utilized based on chaos theory and 

dynamical systems. Due to WSD method based on chaos oscillator combined with 

traditional WSD method such as the Recovery forcing terms methods, the LE 

Thresholds method, the Effect of Amplitude Modulation (AM) by Bifurcation and 

Melnikov Function, the Phase-Shift and Frequency control and Wavelet Denoising 

Method. Such methods were proposed based on chaotic Duffing oscillators can be 

enhanced by complex numerical function through high-processing software. 

However, an existing algorithm and methods can be analyzed and further improve 

through the equation modification and parameters variation will be performed in the 

following chapters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

Chapter 3 

Research Methodology 

 

 

3.1 Introduction 

The research in this thesis is to enhance the original existing stock of 

knowledge about chaotic theory and making for its advancement. The researches in 

this methodology include the study of theories, observation, comparison, analyzed 

and experimentation. The research for knowledge in weak signal detection base on the 

Duffing oscillator can be perform  through objective and systematic method of finding 

solution to research gap techniques. The systematic approach concerning 

generalization and the formulation of chaos theory until the circuit implementation. 

 

3.2 Overall Research Process 

The research will mainly study in 5 directions consisting of 

3.2.1 To study Chaos theory and dynamical systems.  

3.2.2  Weak signal detection methods using Duffing chaotic oscillators. 

3.2.3 To perform the mathematical analysis and parameter optimizations. 

3.2.4 To generalize the form of Chaotic Duffing oscillator. 

3.2.5 To create the electronic WSD circuit using Chaotic Duffing oscillator  

 

3.3 Utilizing Data   

To generalize the form of the chaotic Duffing oscillator, the simulated data in 

the parametric excitation include; 

3.3.1   : The damping ratio varied from zero to unity. 

3.3.2       : The periodic driving force. 

3.3.3    : The frequency of driving force.  

3.3.4  : The periodic driving force deviations.   

3.3.5   : The frequency of driving force deviations. 

3.3.6  Additional noise terms n(t) 
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3.4 Research Tools 

In the thesis, the entire of simulation results were perform through Matlab
®
 

version R2008a, Pspice Orcad student version, and Labview 2009. 

 

3.5 Data Analysis Methods 

The numerical analysis of chaotic theory such as Eigen-value and Jacobian 

matrix which specify the characteristic of the chaotic behavior in phase space 

diagram. Subsequently, The mathematic simulation function were analyzed though 

Matlab
®
  version R2008  program as an indicating tools for detect the chaotic 

behavior such as positive Lyapunov ( LE
+
) indicate the systems is in chaotic state 

where DKY>2 and complex in bifurcation diagram can be also obtain in chaotic state. 

Circuit design is performed through Pspice and verifications will exploit the Labview 

for noise generation and measurements. 

 

3.6 Research Procedures 

3.6.1 Analyze the Duffing chaotic model through the dynamic system by 

using time-scaling method, Eigen value, Eigen-Vector, Jacobian-Matrix and Stability 

analysis.  

3.6.2 Use the numerical result from 6.1 to analyzed by chaotic indicators 

such as attractor, time-domain, Poincare’ section, Bifurcation, Lyapunov diagram and 

Kaplan-York dimension.  

3.6.3 Optimize the system parameters in 6.2. And the research will also 

enhance the model of chaotic Duffing oscillator by generalize the form of the Duffing 

oscillator equation. 

3.6.4 Implement the 6.3 circuit and demonstrate the Duffing chaotic 

Oscillator application in the constructed Circuit. 
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Chapter 4 

Simulations and Experimental Results 

 

This chapter deals with the investigations, simulations and experimental 

results of Duffing chaotic oscillator. First, dynamic behaviors of Duffing chaotic 

oscillator is investigated through Time Domain Analysis, Chaotic Attractors, 

Bifurcation Diagrams, Lyapunov and Kaplan-Yorke Dimensions and Poincare 

section. Second, optimizations of Duffing Chaotic Oscillators Based on LE and DKY 

are described as a new method in finding the robustness of the chaotic system prior to 

the use in weak signal detection. Last, proposed weak signal detection methods are 

described, including phase-plane investigation, and circuit designs using discrete 

components. This chapter summarizes the resulting works of this thesis involving all 

theoretical matters and experimental verifications. 

 

4.1 Investigations of Duffing Chaotic Oscillator Dynamics 

Based on general form of Duffing’s Equation which is described by a second-

order non-autonomous jerk equation as 

)(
 V(x)

+ tf
dt

d
xx        (4.1) 

wherex is a state variable, δ is a damping ratio, and V(x) is a nonlinear restoring force 

function. The driving signal f(t) is a time-varying periodical cosine signal, i.e. f(t) = 

γcos(ωt) where γ and ω are an amplitude and an angular frequency, respectively.  

Typically, the most common nonlinear function is given by V(x) = 0.5αx
2
+ 0.25βx

4
 

where α and β are constants. Such a function V(x) is a double-well case that describes 

the motion of a classical particle in a double-well potential, and its solutions are 

always bounded by the strong cubic restoring force. Consequently, the general form 

of Duffing’s Equation can alternatively be expressed as 

)cos(+ 3 txxxx        (4.2) 
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This Equation (4.2) possesses rich dynamic behaviors based on the signs of α and β 

for appropriately chosen values. Generally, the absolute values of α and β are 

arbitrarily set to unity so that the local maximum of V(x) is located at x=0. In addition, 

Equation (4.2) can exhibits chaos when α<0 and β>0 and the chaotic attractor is 

called Duffing’s two-well oscillator. As a result, the particular form of the Duffing’s 

equation is given by 

)cos(+ 3 txxxx        (4.3) 

It can be considered from (4.3) that its dynamic behaviors ultimately depend upon 

only the parameter γ and ω of the driving signal under a specific value of damping 

ratio. Such an aspect is subsequently applicable to signal detection approach since the 

changes in γ and ω of the driving signal may lead to the changes in dynamic 

behaviors.  

In order to detect the signal amplitude at any specific frequencies, Equation 

(4.3) can be normalized through time scaling method, i.e. t=ωτ, and therefore the 

particular form of Duffing’s equation with frequency transition can be expressed as 

 
)cos(+ 

3

2





  xx
xx 

       (4.4) 

For the sake of simplicity, the subscript of xτ is removed, and the dynamical form of 

(4.4) can consequently be expressed as 

 
))cos((

)(

3 txxyy

yx












   (4.5) 

As a result, Equation (4.5) represents the particular form of Duffing equation with a 

wide range of dynamic behaviors for any frequencies under specific values of the 

forcing signal amplitude and the damping ratio. 
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(b) State variable y(a) State variable x

 

Figure 4.1 Time–domain waveforms of state variable x and y. 

4.1.1 Time Domain Analysis 

Duffing Chaotic oscillator dynamics using the approximate solution 

methods of ordinary differential equations, ode45, named Runge–Kutta 

algorithm. Numerical simulations have been performed in MATLAB. The 

initial conditions of the systems were set to (0,-1.6,-1) with the difference 

values of δ = 0.34, γ = 0.37and with f = 10K Hz. Once the weak periodic 

signal is introduced to the system, the system instantaneously converse from 

the periodic state enters to the chaotic state. Figure 4.1 shows the time–

domain waveforms of state variable x and y. It can be seen that both signals 

are random showing chaotic behaviors in time domain. 

 

4.1.2 Chaotic Attractors 

An attractor is a set towards which a variable, evolving according to the fixed 

point a dynamical systemover time. Those variables represent algebraically as an n-

dimensional vector. The attractor is a region in n-dimensional space. It can be seen 

that, there have a various types of attractor such as, a finite set of points, a curve, a 

manifold, or even a complicated set with a fractal structure named as a strange 

attractor. The trajectory can be either periodic or chaotic state. The Duffing chaotic 

oscillator attractor shows stable limit cycles around two differentwellsFigure 

4.2shows the simulation shows the various forming of Duffing chaotic oscillator 

attractor with perturbation of small sinusoidal signal with different  
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(a) (b)

(c) (c)

 

Figure 4.2 Dynamics forming of the Duffing chaotic attractor at δ = 0.34 and  

(a) γ =0.21(periodic),(b) γ =0.281(chaotic),(c) γ =0.37(chaotic)  and ,(d) γ 

=0.41(periodic). 

 

parameters when parameter δ was fixed. Figure 4.3shows the simulation shows the 

various forming of Duffing chaotic oscillator attractor with perturbation of small 

sinusoidal signal with different parameters when parameter γ was fixed. 

 

4.1.3 Bifurcation Diagrams, Lyapunov and Kaplan-Yorke Dimensions 

Numerical simulations have been performed in MATLAB using the initial 

condition of (x0, y0, z0) = (0,-1.6,-1) In fact, the initial condition is not crucial, and can 

be selected from any point that lies in the basin of attractor. A bifurcation diagram 

shows the possible long-term values, i.e. fixed points or periodic orbits, of a system as 

a function of a bifurcation parameter in the system. It is usual to represent stable 

solutions with a solid line and unstable solutions with a dotted line.The chaoticity is a 

measure of the greatest LE, which is the average rate of growth of the distance  



29 
 

(a) (b)

(c) (d)

 

Figure 4.3The dynamics forming of the Duffing chaotic attractor at γ = 0.37 and (a) δ       

=0.09(periodic), (b) δ =0.1(periodic), (c) δ =0.34(chaotic) and (d) 

δ=0.76(periodic  

 

Table 4.1 Summary of characteristics of Lyapunov exponents and the corresponding  

       attractor types, dimensions, and dynamical behaviors. 

Lyapunov Exponents 
Attractors Dimension Dynamic Behaviors 

LE1 LE2 LE3 

- - - Equilibrium Point 0 Static 

0 - - Limit Cycle 1 Periodic 

0 0 - Attracting 2-Torus 2 Quasi-Periodic 

0 0 0 Invariant Torus 1 or 2 Quasi- Periodic 

+ 0 - Strange 2 to 3 Chaotic 
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between two nearby initial conditions that grows exponentially in time when averaged 

along the trajectory, leading to long-term unpredictability property. The Lyapunov 

exponents can be employed for the estimation of the rate of entropy production and 

the fractal dimension commonly known as Kaplan-Yorke dimension DKY, i.e. 

3

21

1

1 2
LE

LELE

LE

LE

jD
j

j

i

i

KY









  (4.6) 

wherej=n-1 and n is the dimension of a dynamical system. As will be seen later, the 

Duffing chaotic oscillator is a 3-dimenisonal ODE system, and therefore the values of 

DKY for chaos is 2<DKY<3. Typically, the DKY1 can be obtained through the dynamic 

properties of Duffing chaotic oscillator described in (4.6) where the stochastic noise 

function n(t) is excluded.The dynamic analysis is initiated by converting the 

autonomous system (4.5) into a three-dimensional autonomous system as follows;     







z

zxxyy

yx







))cos(( 3 



  (4.7) 

It is shown in Table 4.11that the summarize characteristics of Lyapunov exponents 

and the corresponding attractor types, dimensions, and dynamical behaviors. It is seen 

in Table 4.1 that any system containing at least one positive LE is defined to be 

chaotic. The DKY dimension is conjectured to equal the information dimension of the 

chaotic attractor. The DKY dimension is fractional and can be described as 



















000

)sin()31(

00
2

1 zxJ 



  (4.8) 

In order to find the control parameter δ and γ that offers the maximum values of 

chaoticity and complexity, Figure 4.4 (a) shows the bifurcation diagram of Z-max 

versus parameter. Figure 4.4 (b) shows the plot of the LEs versus parameter γ 

indicates the 2 different regions. The LEs trajectories between the region 0.21 to 

0.4shows an unsmooth plotting structure of negative LEs and Positive LEs 



31 
 

represented the large chaotic window subsequently to the DKY figure and the 

bifurcation diagram. However, The periodic state can be denoted by the others two 

existing regions, 0 to 0.2 and 0.41 to 1 provide the largest Lyapunov exponent at γ = 

0.39.Figure 4.4 (c) shows the plots of the DKY versus parameter which specified the 

maximum value of DKY at 2.44. 

 

(a) Bifurcation diagram of parameter γ 

(b) Lyapunov Exponents LE1,LE2, and LE3 

(c) Resulting Kaplan-Yorke Dimensions 

Chaos

Positive LE

Chaos threshold at DKY=2.0

 

 

Figure 4.4 Plots of parameter γ versus (a) LEs, (b) DKY and (c) bifurcation diagram 

      where the parameter δ has been fixed at 0.34. 
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4.1.4 Poincare Section 

A Duffing Poincare section is similar to phase space diagram in that it plots 

points for x versusẋbut accumulated as a function of particular time interval. The time 

interval typically corresponds to the period of the periodic force. Since sinusoidal 

signal was primarily sets the frequency ω = 1, Poincare section time interval is2π. The 

Poincare step sized equals to 2πi where i is an integer. As for a primary of 

investigations, Figure 4.5 shows the principles of period of Poincare section whilst 

Figure 4.6 shows the Poincare section of Duffing chaotic oscillator at δ =0.21 and γ = 

0.39. 

 

Figure 4.5 The period accumulation of Duffing chaotic Poincare section. 

 

Figure 4.6 The Poincare section of Duffing chaotic oscillator at δ =0.21 and γ = 0.39. 
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4.2  Proposed Optimizations of Duffing Chaotic Oscillator  

4.2.1 Parameter Optimization Techniques and Procedures 

It is commonly known that Duffing chaotic equation can exhibit dynamical 

behaviors, which are characterized by an attractor, a bifurcation diagram, Poincare’ 

section, Lyapunov exponents, and Kaplan York dimension. Such dynamical behaviors 

involve both periodic and chaotic states, depending on the ranges of equation 

parameters. In particular for chaotic states, the realization of different parameter 

values results in distinct chaoticity measured by LEs and complexity measured by 

DKY. The parameter optimization of equations parameters is therefore necessary in 

order to obtain the maximum chaoticity and complexity, leading to the appropriate 

circuit implementation and detecting conditions of WSD systems.Duffing chaotic 

equation parameters which consequently observe through the sets of chaotic 

demonstrator including chaotic time-domain waveform, chaotic attractor, and 

bifurcation and Lyapunov diagram.Second, the DKY2 denotes the maximum 

complexity of the Duffing chaotic equation parameters based on additional forcing 

terms through the deviation ∆γ and ∆ω based on the equation. 

            (4.9) 

The function fs(t) is detecting sinusoidal signal under noisy conditions, expressed as  

     (4.10) 

where∆γ is an amplitude deviation, ∆ω a frequency deviation, Φ is a phase angle, and 

n(t) is an additive Gaussian noise. The proposed method optimizes the parameters δ 

and γ that characterize dynamic behaviors and bifurcation boundaries over the entire 

parameter space using a dimensionless DKY as a detection threshold. Figure 4.7 shows 

the concept of the propose optimization procedure is based on the maximum value of 

DKY, which indicates the particular sets of the effective equation parameters. The 

procedure can be separated into two main stages. First, the periodic driving frequency 

was arbitrarily set at 10 kHz. The capability of WSD method which immense by 

additional background of noises can easily accumulated by the variation of δ from 0 
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to 1 in addition to γ with step-size equal 0.1. All pairs of sampling parameters δ and γ 

yield the corresponding DKY1 values in the parameters mapping space. The maximum 

DKY1 denotes the maximum complexity of the existing Duffing chaotic equation 

which consequently observes through the sets of chaotic demonstrator including 

chaotic time-domain waveform, chaotic attractor, and bifurcation and Lyapunov 

diagram.Second, the DKY2 denotes the maximum complexity of the Duffing chaotic 

equation parameters based on additional forcing terms through the parameters 

deviation ∆γ and ∆ω. The optimization equation resulted at Generalize parameter of 

Duffing chaotic equation which the maximum complexity corresponding to those 

parameters. Last, the two DKY values are compared. 

Set the arbitrary frequency 

Perform parameter Space 

mapping {δ, γ, DKY1}

  Select δ, γ from DKY1, MAX 

Generate time-domain series I 

Obtain DKY1, δ and γ

Perform parameter space  

mapping {Δω, Δγ, DKY2}, 

Select Δω,Δ γ from DKY2 

Generate time-domain series II 

Obtain DKY2, Δω and Δγ

Construct Duffing chaotic 

equation

Compare the detection performance through the DKYs Offset

(1)  Designing

Reference Duffing System

Construct Duffing chaotic 

equation

(2) Parameter Deviation 

Investigation Process

(3) DKYs Comparisons 
 

Figure4.7 Block diagram of the optimization procedures. 
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4.2.2 Parameter Optimization Results 

The proposed Duffing chaotic oscillators have been performed in MATLAB 

and P-spice. The initial conditions of the systems were set to (0,-1.6,-1) and the 

frequency is set at 10 kHz. The additional forcing terms were neglected from the 

system due to the zero deviations in both signal amplitude and damping ratio. Table 

4.2 summarizes the optimized values of Parameter Setting, Lyapunov Exponents, and 

Kaplan-Yorke Dimension (DKY1) as the first step in Figure 4.7.  Figure 4.8shows the 

plots of the 3-dimensional parameter mapping space, involving parameters δ, γ, and 

DKY. As shown in Fig.4.12, the maximum value of DKY1 of value 2.44 can be obtained 

at the coordinate (δ, γ) = (0.34, 0.37), indicating the maximum complexity of the 

Duffing chaotic system. Therefore, the particular form of the Duffing equation in 

(4.3) can be expressed with specific values of δ = 0.34 and γ =0.37. In other words,    

3 +0.34 0.37cos( )x x x x t      (4.11) 

Tables 4.3 – 4.6 summarizes Parameter Setting, Lyapunov Exponents, and 

Kaplan-Yorke Dimension (DKY2) as the second step in Figure 4.7.  Figure4.9 

shows the detection deviation Versus Parameters deviation of detection.  

 

    Table 4.2Sets of parameters  and   with corresponding Values of Lyapunov Exponent 

  and Kaplan-Yorke Dimension, indicating the maximum DKY1, max. 

Parameter Setting 
Lyapunov Exponents 

(LE
-
, LE

0
, LE

+
) 

Kaplan-Yorke 

Dimension(DKY1) δ γ 

0.04 0.24 (-0.3802,0,0.1288) 2.32357 

0.15 0.47 (-3.0414,0,1.1564) 2.38024 

0.25 0.40 (-2.7863,0,0.9697) 2.38170 

0.34 0.37 (-2.4943,0,1.1749) DKY1,max = 2.47101 

0.41 0.51 (-3.6829,0,1.0942) 2.29711 

0.55 0.70 (-4.2887,0,0.8330) 2.19423 

0.62 0.89 (-4.8460,0,0.8997) 2.18715 

0.74 0.61 (-5.4334,0,0.9028) 2.16168 

0.88 0.71 (-6.3520,0,0.8164) 2.12854 

0.92 0.75 (-6.5088,0,0.7156) 2.10955 
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Figure4.8   Plots of the three–dimensional of parameter mapping space. 

 

 

Table 4.3Sets of parameters +Δωand+Δγwith the corresponding Values of Lyapunov  

Exponents and Kaplan-Yorke Dimension, including the Detection deviation 

betweenDKY1,MAX  and DKY2 and its Percentage differences 

Parameter 

Deviation 
LyapunovExponents 

(LE
+
,LE

0
,LE

-
) 

DKY2 DKY1-DKY2 %D 

+Δω +Δγ 

0.1 0.0 (-2.6011,0,0.4397) 2.16904 0.30197 12.22 

0.2 0.2 (-2.7693,0,0.6079) 2.21952 0.25149 10.17 

0.3 0.7 (-2.6906,0,0.5292) 2.19669 0.27432 11.10 

0.4 0.2 (-2.8385,0,0.6670) 2.23854 0.23247 9.47 

0.5 0.8 (-2.9521,0,0.7907) 2.26785 0.20316 8.22 

0.6 0.6 (-2.9266,0,0.7652) 2.26146 0.20955 8.48 

0.7 0.8 (-2.8482,0,0.6867) 2.24112 0.22989 9.30 

0.8 0.0 (-2.5538,0,0.3924) 2.15366 0.31735 12.84 

0.9 0.9 (-2.8411,0,0.6798) 2.23926 0.23175 9.378 
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Table 4.4  Sets of parameters -Δωand+Δγwith the corresponding Values of Lyapunov 

      Exponents and Kaplan-Yorke Dimension, including the detection deviation       

     betweenDKY1,MAX  and DKY2 and its Percentage differences. 

Parameter 

Deviation 
LyapunovExponents 

(LE
+
,LE

0
,LE

-
) 

DKY2 DKY1-DKY2 %D 

-Δω +Δγ 

-0.1 0.2 (-2.2228,0,0.06143) 2.02764 0.44337 21.87 

-0.2 0.0 (-2.5899,0,0.4284) 2.16541 0.30560 14.11 

-0.3 0.1 (-2.5779,0,0.4166) 2.16159 0.30942 14.31 

-0.4 0.0 (-2.6416,0,0.4802) 2.18177 0.28924 13.26 

-0.5 0.1 (-1.6132,0,0.5481) 1.66020 0.81081 48.84 

-0.6 0.7 (-2.3117,0,0.1503) 2.06503 0.40598 19.66 

-0.7 0.3 (-2.1873,0,0.2588) 2.01183 0.45918 22.82 

-0.8 0.2 (-2.4965,0,0.3351) 2.13423 0.33678 15.78 

-0.9 0.0 (-1.9674,0,0.1940) 1.90139 0.56962 29.96 

 

 

 

Table 4.5 Sets of parameters +Δωand-Δγwith the corresponding Values of Lyapunov 

Exponents and Kaplan-Yorke Dimension, includingthe detection deviation  

      betweenDKY1,MAXand DKY2 and its Percentage differences. 

Parameter 

Deviation 

Lyapunov 

Exponents 

(LE
+
,LE

0
,LE

-
) 

DKY2 DKY1-DKY2 %D 

-Δγ +Δω 

-0.1 0.5 (-2.6839,0,0.5225) 2.19469 0.12590 12.59 

-0.2 0.9 (-2.7259 ,0,0.5640) 2.20709 0.11958 11.96 

-0.3 0.9 (-2.7690 ,0,0.6075) 2.21942 0.11336 11.34 

-0.4 0.9 (-2.8426,0,0.6812) 2.23964 0.10330 10.33 

-0.5 0.8 (-2.9030,0,0.7416) 2.25545 0.09557 9.557 

-0.6 0.9 (-2.9127,0,0.7513) 2.25796 0.09436 9.436 

-0.7 0.4 (-2.9263,0,0.7648) 2.26137 0.09270 9.270 

-0.8 0.1 (-2.8843,0,0.7229) 2.25064 0.09791 9.791 

-0.9 0.5 (-2.9743,0,0.8129) 2.27332 0.08696 8.696 
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Table 4.6 Sets of parameters -Δωand-Δγwith the corresponding Values of Lyapunov  

Exponents and Kaplan-Yorke Dimension, includingthe Detection deviation 

      betweenDKY1,MAX  and DKY2 and its Percentage differences. 

Parameter 

Deviation 
LyapunovExponents 

(LE
+
,LE

0
,LE

-
) 

DKY2 DKY1-DKY2 %D 

-Δω -Δγ 

-0.1 -0.4 (-2.6678,0, 0.5065) 2.18984 0.12840 12.84 

-0.2 -0.8 (-2.6265,0, 0.4651) 2.17708 0.13501 13.50 

-0.3 -0.4 (-2.8568,0, 0.6954) 2.24342 0.10145 10.15 

-0.4 -0.6 (-2.9171,0, 0.7558) 2.25907 0.09382 9.38 

-0.5 -0.4 (-3.0039,0, 0.8424) 2.28045 0.08356 8.36 

-0.6 0.0 (-3.2575,0, 1.0961) 2.33650 0.05757 5.76 

-0.7 0.0 (-3.1130,0, 0.9517) 2.30570 0.07170 7.17 

-0.8 -0.3 (-3.0041,0, 0.8427) 2.28052 0.08353 8.35 

-0.9 -0.4 (-2.9218,0, 0.7604) 2.26025 0.09325 9.32 
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Figure4.9Detection deviation Versus Parameters deviation of detection 
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4.3  Proposed Weak Signal Detection using Duffing Oscillator 

4.3.1 White Gaussian Noises and its generations 

White noise can be viewed as a random signal with a flat power 

spectral density. In other words, noise is a signal that contains equal power 

within any frequency band with a fixed width. As for simulation purposes, 

the command in MALAB is available as y=awgn(x,snr,sigpower,s) uses s, 

which is a random stream handle, to generate random noise samples with 

randn. If s is an integer, then resets the state of randn to s. The latter usage is 

obsolete and may be removed in a future release. In Simulink diagram, a 

repeatable sequence using any Random Number block with the same 

nonnegative seed and parameters. The seed resets to the specified value each 

time a simulation starts. By default, the block produces a sequence that has a 

mean of 0 and a variance of 1. To generate a vector of random numbers with 

the same mean and variance, specify the Seed parameter as a vector. Figure 

4.10 shows white Gaussian noise histograms, time-domain waveforms, and 

Periodogram power spectral density with variance of 1; (a) Mean = 0.1 and 

(b) Mean =1. 

 

(a) Mean = 0.1 and Variance = 1 

(a) Mean = 1  and Variance = 1 

 

Figure 4.10White Gaussian noise histograms, time-domain waveforms, and                      

Periodogram power spectral density; (a) Mean = 0.1 and (b) Mean =1. 
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4.3.2 Proposed Weak Signal Detection Based on Phase-Plane Displays 

 The proposed technique in this section is to investigate the attractor 

diagram at different conditions of signals and noises. The method is based on 

the proposed WSD method that treats the addition of a forcing term defined as 

fs(t) into Duffing chaotic oscillator, i.e.  

)())cos((

)(

1

3 tftxxyy

yx

s










                (4.12) 

The function fs(t) is detecting sinusoidal signal under noisy conditions, expressed as  

)()cos()( 2 tnttfs  


(4.13) 

It can be seen that the frequency of the reference signals and the to-be-detected signal 

are set to be the same while the amplitude are different as summarized in Table 4.3. 

The weak signal detection. In the detection process, three cases additional signal 

which is considered as to-be-detected signal are 10mV, 100mV, and 200mV. The 

variance of noises is considered in two cases including mean values of 0.1 and 1hile 

the variance is kept at 1.  

Figure 4.11 shows Simulink simulation diagram of the Duffing chaotic 

oscillator in weak signal detection process. Figure 4.12shows the phase diagram of the 

weak signal detection when additional signal is 10mV while the noise value is 0.1 and 

1 and the variance is 1.Figure 4.13shows the phase diagram of the weak signal 

detection when additional signal is 100mV while the noise value is 0.1 and 1 and the 

variance is 1.Figure 4.14shows the phase diagram of the weak signal detection when 

additional signal is 200mV while the noise value is 0.1 and 1 and the variance is 1. It 

can be considered from the figure that even very small values of the signal to be 

detected, the phase-diagram can potentially shows the dynamic of Duffing oscillator. 

However, very large values of noises may disturb the dynamic of Duffing oscillator. 
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Table 4.7 Summary of parameter used in weak signal detection process 

Parameter Conditions Values Units 

Damping factor  (δ) 0.34 - 

Nominal Frequency (ω) 1 Rad/s 

Reference signal amplitude (γ1) 370 mV 

To-be-detected  signal amplitude (γ2) varied mV 

Noise signal mean and variance varied mV 

 

 

Figure 4.11Simulink simulation diagram of the Duffing chaotic oscillator in weak  

       signal detection process. 
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(a) Additional signal at 10mV , Noise mean  0.1 V and Variance 1V

 (b) Additional signal at 10mV , Noise mean  1 V and Variance 1V

 

 

Figure 4.12 Weak signal detection when additional signal is 10mV while the noise  

      value is 0.1 and 1 and the variance is 1. 
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 (a) Additional signal at 100mV , Noise mean  0.1 V and Variance 1V

 

 (b) Additional signal at 100mV , Noise mean  1 V and Variance 1V

 

 

Figure 4.13Weak signal detection when additional signal is 100mV while the noise  

      value is 0.1 and 1 and the variance is 1. 
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 (a) Additional signal at 200mV , Noise mean  0.1 V and Variance 1V

 

 

(b) Additional signal at 200mV , Noise mean  1 V and Variance 1V

 

 

Figure 4.14Weak signal detection when additional signal is 200mV while the noise  

      value is 0.1 and 1 and the variance is 1. 
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4.4 Proposed Weak Signal Detection Circuit and Implementations 

4.4.1 Circuit Designs 

The circuits designed based on the signal correlation principle distinguishes to 

the weak signal from the noises efficiently. Nonetheless, due to the large circuit lead 

user to high application cost. The traditional weak signal detection mainly uses the 

method of linear filtering and signal superimposition to extract the signal. However, it 

can be seen that such  methods often unable to detected signal when the background 

noise is strong and the detecting signal is weak, cannot meet the needs of weak signal 

detection requirements. Although modern detection methods have apparently effect, 

strong adaptability, but most of them have complex structure, difficult to achieve. 

Therefore, the weak signal detection technology has a new breakthrough when the 

chaos theory is introduced in the signal detection. The Chaos detection method is 

different from a variety of existing measuring methods, which is a new signal 

processing method. The proposed circuits based on Duffing chaotic oscillator has 

been proposed in this paper. Due to the simplicity, easy to implementation and 

efficiency computation, Numerical simulation performs through P-spice software in 

order to model the Duffing chaotic oscillator. 

 

 

Figure 4.15Schematic diagram of Duffing Chaotic oscillator with additional selective 

      band-pass filter and Voltage measurement circuit 
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4.4.2 Circuit Simulation using Pspice 

 

 

Figure 4.16 Schematic diagram of Duffing Chaotic oscillator in Pspice. 

As shown in Figure 4.15. The Circuit can be decomposed into three main 

parts. First, Duffing chaotic oscillator circuit is driven from RLC oscillator by 

external periodic signal. Part of circuits is composed with linear component. The 

nonlinearity components include the feedback loop consisting of resistance and sets of 

diodes. The operational amplifier performs with two functional processes including 

buffer for the external sinusoidal signal and amplifying for positive linear feedback 

stage. Noise can be embedded into Duffing circuits resulted through the chaotic 

attractor by generated Gaussian white noise from Labview as the external signal 

modulated with Duffing output voltage. 

The simplest band-pass filters are LC-filter consist of inductor and capacitor. 

Such components can be connected in series or parallel to an existing circuit, the 

resulting circuits are named as series resonant or parallel resonant circuits, 

respectively. The additional circuits can be tune to the particular frequency by the LC 

resonance properties. In both series and parallel added to the circuits have a resonance 



47 
 

frequency which neglecting the effect of the resistance in a theoretical examination. 

The additional components can be connected to the circuits in different ways 

including parallel-tuned band-pass and series-tuned band-pass as shown in fig1.In 

series-tuned circuit, both capacitor and inductor have the same current and Voltage 

across one of the components leads the current by 90o while the other lags the 

component by 90o therefore the voltage are consequently different with 180o apart. 

At the resonance frequency Voltage across the series circuit are zero. Hence, the filter 

circuits perform as a short circuit. Such a circuit property can be widely utilized in a 

frequency selective application. Such a circuit can be measured by term of either 

Voltage output or Current. Therefore the Differential amplifier circuits have been 

employed in the experiment for current output measurement. Using operational 

amplifier as a device to measure current by connecting one voltage signal onto one 

input terminal and another voltage signal onto the other input terminal the output 

voltage will be proportional to the difference between two input signals. Then the 

differential amplifier amplified the difference between two voltages making the 

subtractor circuit setting gain equal to 1.  Integrate the differential output voltage over 

the resister to obtain the current output. The early investigation of the Duffing 

oscillator was done in Pspice. Figure 4.16shows the schematic diagram of Duffing 

Chaotic oscillator in Pspice.Figure 4.17 shows the noise generated in Pspice.Figures 

4.18 and 4.18 show the detected noise in Pspice for the additional signal of 100mV 

and 200 mV, respectively. The figures reveal that the Duffing chaotic oscillator still 

sustains its dynamics behaviors through the two-well attractor.  

 

 

Figure 4.17 Noise generated in Pspice using PWL signal generator. 
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Figure 4.18 Simulations if the case 100mV at frequency of 1.7 kHz at chaoticstate. 

(a) Voltage Waveform Vout (b) Current Waveform IL

(c) Chaotic Attractor Vout-IL (b) FFT of Vout and IL
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Figure 4.19 Simulations if the case 200 mV at frequency of 1.7 kHz at chaotic state. 
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4.4.3 Circuit Implementation and Experimental Results 

The circuit implementation has been made on board using discrete 

components. The Op-amp is uA741 with a dual voltage supply of 12V, and the diode 

is 1N4148. All resistors are 10kΩ. The inductor and capacitor are 22mH and 470nF, 

respectively.Figure 4.20 shows the circuit implementation of the proposed Duffing 

chaotic oscillator for use in weak signal detection. It is seen that the circuit is very 

simple. Chaotic dynamic can be tuned by the potentiometers for the setting of system 

parameters prior to varying of amplitude or the frequency of the input signals. Figure 

4.21 shows the chaotic attractors responding to different frequencies and noise 

applied. It is seen that different frequency results in different chaotic states including 

both periodic and chaotic states. Figure 4.22 shows block diagrams of noise 

generation and signal measurement using LABVIEW. The results of Labview 

measurements are shown in Figures 4.23-4.25. In particular, Figure 4.26 shows the 

weak signal detection under noise condition. The attractor still sustains its shape but 

some noises are added. The input wave form with inherent sinusoidal signal in Figure 

4.27 can be detected successfully. 

 

 

Figure 4.20 Circuit implementation of the proposed Duffing chaotic oscillator for use 

      in weak signal detection. 
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(a) Input frequency = 0.983 kHz (b) Input frequency = 1.738 kHz

(c) Input frequency = 2.555 kHz (d) Input frequency = 3.085 kHz

(c) Input frequency = 3.281 kHz (d) Input frequency = 3.281 kHz with 

noise applied
 

Figure 4.21 Chaotic attractors responding to different frequencies and noise applied. 
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Figure 4.22 Block diagrams of noise generation and signal measurement using 

LABVIEW. 
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Figure 4.23 Frequency spectrum of Duffing (a) output voltages, (b) band-pass filter at           

      f = 3.085 kHz, and (c) resulting chaotic attractor. 
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Figure 4.24 Frequency spectrum of Duffing (a) output voltages, (b) band-pass filter at    

      f = 3.281 kHz, and (c) resulting chaotic attractor. 
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Figure 4.25 Frequency spectrum of Duffing (a) output voltages, (b) band-pass filter at  

      f = 4.14 kHz, and (c) resulting chaotic attractor 
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Figure 4.26 Frequency spectrum of Duffing embedded with noises (a) output     

      voltages, (b) band-pass filter at f = 4.14kHz, and (c) resulting chaotic attractor. 
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(b)

(c)

(a)

 

Figure 4.27 Particular illustrations of weak signal detection, (a).Duffing chaotic  

      output voltages (b) noise voltage input (c)noise embedded in Duffing output     
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Chapter 5 

Conclusion 

 

5.1  Conclusions  

Weak signal detection has been extensively utilized in many signal processing 

fields such as communications, mechanical industry, medical science and 

military.Due to the recent high-demand in mechanical industry measurement, weak 

signal detection has been employed as a tool to detect an Acoustic Emission (AE) in 

order to exam the corrosion of cutting tools in metal cutting process ,a corrosion in 

reinforced concrete structures and in the fuel pipes line. Nonetheless, the use of 

Duffing chaotic oscillators still has some problems. The precision of the system 

depend on the parameter threshold value still unsolved. Even a small variation of 

parameter value may cause a dramatically change in the chaotic system behavior. In 

addition, there is no simple circuit implementation of Duffing oscillator. 

 This thesis has aimed to perform the mathematical analysis and parameter 

optimizations of Duffing oscillator, design the weak signal detection methods with the 

chaotic Duffing oscillator with high accuracy and low SNR, and implement the 

electronic weak signal detection circuit and system using chaotic oscillator. This 

thesis has therefore contributed two major significant research outcomes, including 

parameter optimization and hardware implementation of the Duffing chaotic 

oscillator. The proposed parameter optimizations aim to achieve the parameter 

robustness for circuit operation under weak signal detection mode through the 

comparisons of Kaplan-Yorke conjecture that quantitatively measures the system 

complexity. The optimized parameters of Duffing equation has been found and 

employed for the circuit implementation. The circuit implementation of Duffing 

chaotic oscillator has also been proposed with minimal components with band-pass 

filtered output and current measurement circuit. The circuit could potentially measure 

weak signals under noisy conditions through the phase-plane observation in the 

changes of chaotic attractor.  
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5.2 Suggestions 

 As the weak signal detection presented in this thesis is still in an early stage of 

finding some parameter optimizations and some basic implementation, ones may 

require some improvements summarized as follows; 

 5.2.1 The real signals from equipment failures obtained from acoustic 

emission sensors may be required in future to demonstrate the potentials of the 

Duffing chaotic oscillator in weak signal detection. 

 5.2.2 The circuit implementation may be improved as a stand-alone device 

including battery as a power supply and the connectors for immediate use in real 

world applications. 

 5.2.3 It may be useful if the readily available sinusoidal oscillator is 

integrated into the Duffing chaotic oscillator for use as a reference signals when 

comparison is needed. 
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Appendix A – MATLAB   Duffing chaotic attractor code 

 
function Attractors 

Fs = 1e7; 

t  = 0: 1/Fs: 0.03; 

y0 = [-1; -0.6;0]; 

global d g w 

d = 0.34; 

g = 0.72; 

w = 2*pi*10000; 

[~, y] = ode45(@run_Attractors, t, y0); 

f = y(50000:length(y),:); 

subplot(1, 1, 1) 

plot(f(:,1), f(:,2)); 

xlabel('x', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

ylabel('y', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

function F = run_Attractors(~, f) 

global d g w 

x = f(1); 

y = f(2); 

z = f(3); 

F = zeros(size(f)); 

F(1) = w*(y); 

F(2) = w*(-d*y+x-(x^3)+g*sawtooth(z)); 

F(3) = w; 

 



66 
 

Appendix B – MATLAB   Duffing chaotic attractor code 

 
function Attractors 

Fs = 1e7; 

t  = 0: 1/Fs: 0.03; 

y0 = [-1; -0.6;0]; 

global d g w 

d = 0.4; 

g = 0.36; 

w = 2*pi*10000; 

 

[~, y] = ode45(@run_Attractors, t, y0); 

f = y(50000:length(y),:); 

 

subplot(1, 1, 1) 

plot(f(:,1), f(:,2)); 

xlabel('x', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

ylabel('y', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

 

function F = run_Attractors(~, f) 

global d g w 

 

x = f(1); 

y = f(2); 

z = f(3); 

 

F = zeros(size(f)); 

 

F(1) = w*(y); 

F(2) = w*(-d*y+x-(x^3)+g*cos(z)); 

F(3) = w; 

 

 

Appendix C – MATLAB   Bifurcation  code 

 
function Bifurcation 

clear all 

Fs = 1e6; 

t  = [0: 1/Fs: 0.05]; 
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y0 = [-1; -0.6;0]; 

gmax          = 1; 

gmin          = 0; 

Sample_Points = 10; 

Step_Size=(gmax-gmin)/Sample_Points; 

v  = zeros(Sample_Points+1,length(t)); 

tp = zeros(Sample_Points+1,1); 

global d gm w c 

d = 0.34; 

w=2*pi*10000; 

c=1; 

%g = 0.36; 

for i = 1: 1: Sample_Points+1; 

gm = (i-1)*Step_Size+gmin; 

    [t, y] = ode45(@ODE, t, y0); 

    A = y(:,2)'; 

 for j = 1: 1: length(A) 

h(i, j) = A(1, j); 

end 

v(i,:) = feval('FindMax', h(i,:)); 

v(i, 1: 15) = 0; 

tp(i) = (i-1)*Step_Size+gmin; 

end 

%subplot(2, 2, 1) 

plot(tp,v,'b.','MarkerSize',4.5) 

xlabel('Parameter gm', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 
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ylabel(      'gm max', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

%axis([0 2 -2 2]); 

function g = FindMax(h) 

g=zeros(1,length(h(1,:))); 

for k = 2: 1: (length(h(1,:))-1) 

if (h(1, k-1)<h(1, k))&&(h(1, k)>h(1, k+1)) 

g(1, k) = h(1, k);  

end 

end 

function F = ODE(~, f) 

global d gm w c 

c=1; 

x = f(1); 

y = f(2); 

z = f(3); 

F = zeros(size(f)); 

F(1) = w*y; 

F(2) = w*(-d*y+x-(x^3)+gm*cos(z)); 

F(3) = w*c; 

 

Appendix D – MATLAB   Lyapunov  code 
 

function [Texp,Lexp]=lyapunov(n,rhs_ext_fcn,fcn_integrator,tstart,stept,tend,ystart,ioutp); 

%    Lyapunov exponent calcullation for ODE-system. 

%    Thealogrithm employed in this m-file for determining Lyapunov 

%    exponents was proposed in 
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%         A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, 

%        "Determining Lyapunov Exponents from a Time Series," Physica D, 

%        Vol. 16, pp. 285-317, 1985. 

%    For integrating ODE system can be used any MATLAB ODE-suite methods.  

% This function is a part of MATDS program - toolbox for dynamical system investigation 

%    See:    http://www.math.rsu.ru/mexmat/kvm/matds/ 

%    Input parameters:  

%      n - number of equation 

%      rhs_ext_fcn - handle of function with right hand side of extended ODE-system. 

%              This function must include RHS of ODE-system coupled with  

%              variational equation (n items of linearized systems, see Example).                    

%      fcn_integrator - handle of ODE integrator function, for example: @ode45                   

%      tstart - start values of  independent value (time t) 

%      stept - step on t-variable for Gram-Schmidt renormalization procedure. 

%      tend - finish value of time 

%      ystart - start point of trajectory of ODE system. 

%      ioutp - step of print to MATLAB main window.ioutp==0 - no print,  

%              if ioutp>0 then each ioutp-th point will be print. 

%    Output parameters: 

%      Texp - time values 

%      Lexp - Lyapunov exponents to each time value. 

%    Users have to write their own ODE functions for their specified 

%    systems and use handle of this function as rhs_ext_fcn - parameter.       

%    Example. Lorenz system: 

%               dx/dt = sigma*(y - x)     = f1 

%               dy/dt = r*x - y - x*z = f2 
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%               dz/dt = x*y - b*z     = f3 

%    The Jacobian of system:  

%        | -sigma  sigma  0 | 

%    J = |   r-z    -1   -x | 

%        |    y      x   -b | 

%    Then, the variational equation has a form: 

%    F = J*Y 

%    where Y is a square matrix with the same dimension as J. 

%    Corresponding m-file: 

%        function f=lorenz_ext(t,X) 

%         SIGMA = 10; R = 28; BETA = 8/3; 

%         x=X(1); y=X(2); z=X(3); 

%         Y= [X(4), X(7), X(10); 

%             X(5), X(8), X(11); 

%             X(6), X(9), X(12)]; 

%         f=zeros(9,1); 

%         f(1)=SIGMA*(y-x); f(2)=-x*z+R*x-y; f(3)=x*y-BETA*z; 

%         Jac=[-SIGMA,SIGMA,0; R-z,-1,-x; y, x,-BETA]; 

%         f(4:12)=Jac*Y; 

%    Run Lyapunov exponent calculation: 

%    [T,Res]=lyapunov(3,@lorenz_ext,@ode45,0,0.5,200,[0 1 0],10);    

%    See files: lorenz_ext, run_lyap.    

% -------------------------------------------------------------------- 

% Copyright (C) 2004, Govorukhin V.N. 

% This file is intended for use with MATLAB and was produced for MATDS-program 

% http://www.math.rsu.ru/mexmat/kvm/matds/ 
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% lyapunov.m is free software. lyapunov.m is distributed in the hope that it  

% will be useful, but WITHOUT ANY WARRANTY.  

%       n=number of nonlinear odes 

%       n2=n*(n+1)=total number of odes 

n1=n; n2=n1*(n1+1); 

%  Number of steps 

nit = round((tend-tstart)/stept); 

% Memory allocation  

y=zeros(n2,1); cum=zeros(n1,1); y0=y; 

gsc=cum; znorm=cum; 

% Initial values 

y(1:n)=ystart(:); 

for i=1:n1 y((n1+1)*i)=1.0; end; 

t=tstart; 

% Main loop 

for ITERLYAP=1:nit 

% Solutuion of extended ODE system  

  [T,Y] = feval(fcn_integrator,rhs_ext_fcn,[t t+stept],y);   

  t=t+stept; 

  y=Y(size(Y,1),:); 

for i=1:n1  

for j=1:n1 y0(n1*i+j)=y(n1*j+i); end; 

end; 

%       construct new orthonormal basis by gram-schmidt 

znorm(1)=0.0; 

for j=1:n1 znorm(1)=znorm(1)+y0(n1*j+1)^2; end; 
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znorm(1)=sqrt(znorm(1)); 

for j=1:n1 y0(n1*j+1)=y0(n1*j+1)/znorm(1); end; 

for j=2:n1 

for k=1:(j-1) 

gsc(k)=0.0; 

for l=1:n1 gsc(k)=gsc(k)+y0(n1*l+j)*y0(n1*l+k); end; 

end; 

for k=1:n1 

for l=1:(j-1) 

y0(n1*k+j)=y0(n1*k+j)-gsc(l)*y0(n1*k+l); 

end; 

end; 

znorm(j)=0.0; 

for k=1:n1 znorm(j)=znorm(j)+y0(n1*k+j)^2; end; 

znorm(j)=sqrt(znorm(j)); 

for k=1:n1 y0(n1*k+j)=y0(n1*k+j)/znorm(j); end; 

end; 

%       update running vector magnitudes 

for k=1:n1 cum(k)=cum(k)+log(znorm(k)); end; 

%       normalize exponent 

for k=1:n1  

lp(k)=cum(k)/(t-tstart);  

end; 

% Output modification 

if ITERLYAP==1 

Lexp=lp; 
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Texp=t; 

else 

Lexp=[Lexp; lp]; 

Texp=[Texp; t]; 

end; 

 % if (mod(ITERLYAP,ioutp)==0) 

 %    fprintf('t=%6.4f',t); 

 %    for k=1:n1 fprintf(' %10.6f',lp(k)); end; 

 %    fprintf('\n'); 

 % end; 

for i=1:n1  

for j=1:n1 

y(n1*j+i)=y0(n1*i+j); 

end; 

end; 

end; 

 

 

Appendix E – MATLAB Run-Lyapunov code 

 
IC=[-1 -0.6 0]; 

amax=1; 

amin=0;   

jmax=10;     

del=(amax-amin)/jmax; 

globaldgm 
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for j = 1: 1: jmax+1    

dgm = (j-1)*del+amin 

    [T, Res] = lyapunov(3, @JacobiansMatrices, @ode45, 0, 0.00001, 0.05, IC, 10); 

    A1 = Res(end,1); 

    A2 = Res(end,2); 

    A3 = Res(end,3); 

A  = 2+((A1)/abs(A3+A2)); 

L1(j) = A1;  

L2(j) = A2;  

L3(j) = A3; 

L(j) = A; 

tp(j) = (j-1)*del+amin;       

end 

subplot(2, 2, 1)  

plot(tp, L);   

xlabel(           'Parameter w', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

ylabel('Kaplan-Yorke Dimension', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 

'bold'); 

 

subplot(2, 2, 3) 

plot(tp, L1, tp, L2, tp, L3); 

xlabel(       'Parameter w', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

ylabel('Lyapunov Exponents', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

 

Appendix F – MATLAB  Jacobian matrix code 

 
function f = JacobiansMatrices(t, X) 
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% Values of parameters 

global d gm c dwdgm 

gm = 0.37; 

d = 0.34;  

c = 1; 

dw = -0.5;          

w=2*pi*10000;   

x=X(1); y=X(2); z=X(3);  

Y= [X(4), X(7), X(10);  X(5), X(8), X(11);   X(6), X(9), X(12)]; 

f=zeros(9,1); 

f(1) = w*y; 

f(2) = w*(-d*y+x-(x^3)+gm*cos(z)+((1+dgm)*gm*cos((1+dw)*z))); 

f(3) = w*c; 

Jac=[               0,       w,          0; w*(1-3*(X(1)^2)),     w*(-d),   w*((-gm)*sin(X(3))-

((1+dw)*(1+dgm)*gm*sin((1+dw)*X(3)))); 0,       0,         0] 

%Variational equation    

f(4:12)=Jac*Y 
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Appendix G– MATLAB  Poincare section code 

 
clear 

deq=inline('[x(2);x(1)-0.21*x(2)-(x(1))^3+0.39*cos(1*t)]','t','x'); 

options=odeset('RelTol',1e-4,'AbsTol',1e-4); 

[t,xx]=ode45(deq,0: (1)*2*pi: (5000)*2*pi,[1,0]); 

plot(xx(:,1),xx(:,2),'.','MarkerSize',1)  

fsize=15;   

xlabel('x','FontSize',fsize)  

ylabel('y','FontSize',fsize)  

title('Poincare Section of the Duffing System') ; 
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