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Chapter 1 

Introduction 

 

1.1 Background 

 Chaos is a phenomenon that occurs in nonlinear dynamical systems. Such 

deterministic dynamical systems have their origin in Newtonian physics, leading to 

the systematic development in differential calculus. The “physical laws of nature” in 

the Newtonian sense propose to model all phenomena by deterministic laws 

describing the flow of system states [1]. Mathematicians and physicists have sought to 

understand the world in terms of these deterministic laws, and due to the lack of 

powerful computation devices, searched for closed form solutions for deterministic 

dynamical systems. Unfortunately, the existence of closed form solutions is 

essentially limited to the case of linear dynamical systems. This did, however, not 

limit the optimism of visionaries conjecturing that, with the knowledge of all 

“physical laws of nature”, predictions about the however remote future of dynamical 

systems are feasible. In order to scope with the incompleteness of the deterministic 

description available about a system, the concept of randomness has been introduced 

to capture all behavior counters the concept of predictability. While a number of 

important ideas refer to Cardano, Bernoulli and, in particular Gauss and Fermat, there 

are mainly the results of Kolmogorov in the 1930’s [2] that influenced modern 

probability theory. Another manifestation of randomness comes from statistics, in 

which by the very nature of the problem, a complete description of the underlying 

dynamical system is not available. 

For the dynamical [3] systems approach, it was Poincare’ observed that 

determinism does not necessarily lead to predictability without limits (though the 

consequences were not completely understood at his time). Indeed, Poincare’ 

described the intrinsic nature of what has later been called “chaotic behavior”, their 

sensitive dependence on initial conditions. An example is the computer processing 

evolution of a rather complex dynamical system. Despite the initial optimism it has 

been found unpredictable over a longer time period. However, this unpredictability 

need not be linked to complex systems. For the very example of the weather, Loren 
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found deterministic unpredictability even in a very simplified third order module. a 

small perturbation of the state of the system would very soon lead to a 

macroscopically different evolution of the system 

In the past years, synchronization of chaotic systems problem has received a 

great deal of attention among scientists in various fields. As it is well known, the 

study of the synchronization problem for nonlinear systems has been very important 

from the nonlinear science point of view, in particular, the applications to biology, 

medicine, cryptography and secure data transmission. In general, synchronization 

research has been focused on two areas. The first one relates to the employment of 

state observers, where the main applications pertain to the synchronization of 

nonlinear oscillators. The second one is the use of control laws, which allows 

achieving the synchronization between nonlinear oscillators, with different structure 

and order. Of particular interest is the connection between the observers for nonlinear 

systems and chaos synchronization, which is also known as master-slave 

configuration. Therefore, chaos synchronization problem can be posed as an observer 

design procedure, where the coupling signal is viewed as output and the slave system 

is regarded as observer. The general idea for transmitting information via chaotic 

systems is that, an information signal is embedded in the transmitter system which 

produces a chaotic signal, the information signal is recovered when the transmitter 

and the receiver are identical. Since Pecora and Carroll’s [1-3] observation on the 

possibility of synchronizing two chaotic systems, several synchronization schemes 

have been developed. Synchronization can be classified into mutual synchronization 

and master slave synchronization. 

There are many applications to chaotic communication and chaotic network 

synchronization. The techniques of chaotic communication can be divided into three 

categories (1) Chaos masking; the information signal is added directly to the 

transmitter. (2) Chaos modulation; it is based on the master-slave synchronization, 

where the information signal is injected into the transmitter as a nonlinear filter. (3) 

Chaos shift keying; the information signal is supposed to be binary, and it is mapped 

into the transmitter and the receiver. In these three cases, the information signal can 

be recovered by a receiver if the transmitter and the receiver are synchronized. In 

order to reach synchronization, the receiver should be a replica of the transmitter. 
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1.2 Motivations 

 Security is an important for communication. Where of two entities are 

communicating in a way not susceptible to eavesdropping or interception. This is 

known secure communication. This includes means by which people can share 

information with varying degrees of certainty that third parties cannot intercept. There 

have been considerable interests in chaotic communications over the past several 

years. Synchronization caused great interest in science and technology workers. The 

research of the application of chaos synchronization in secret communication is the 

most competitive research fields in recent years. Most of the secure communication 

system requirements of the signal modulation, as far as possible the regular and has 

strong anti-interference ability to interpret. 

 

1.3 Statement of Problems and Hypothesis 

 The synchronization methods have been proposed in a number of the related 

theories and experiment results. The existing problems encountered includes 

relatively high decoding errors, slow decoding of receiver processing signals, large 

size of circuit implementation, which may lead to the application to the 

communication. Various unseen result were still in which theoretical forms which 

have not been practically utilized in recent years. Therefore, the chaotic jerk oscillator 

may be a potential alternative the size and simple synchronization. Feedback 

reconstruction may lead to an error reduction and also perform a faster 

synchronization. 

 

1.4 Objectives 

 1.4.1 To design and implement compact cost-effective chaotic circuits. 

 1.4.2 To design and implement the chaotic-masking secure communication 

system. 

 

1.5 Research Scope 

 1.5.1 Study the dynamical system including chaos theory, nonlinear analysis 

through the mathematical model such as dynamic equation, time-scaling model, Eigen 
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value, Eigen-Vector, Jacobian-Matrix and also Stability analysis. Study chaotic 

indicators such as attractor, time-domain, Poincare’ section, Bifurcation, Lyapunov 

diagram and Kaplan-York dimension [1-3]. The research will also enhance the model 

of chaotic function by generalizing the form of the chaotic function equation. 

 1.5.2 Implement chaotic circuit in secure communication systems for 

simulation and design including chaotic circuit by generalizing the form of the chaotic 

function equation. 

 1.5.3 Implement the chaotic-masking secure walky-talky communication 

system. 

 

1.6 Expected Outcomes 

1.6.1 Gain a knowledge Chaos theory and dynamics systems. 

1.6.2 Gain knowledge the chaotic circuits and synchronizations in secure 

communication systems. 

1.6.3 Achieve compact cost-effective chaotic oscillator. 

1.6.4 Achieve a chaotic-masking secure walky-talky communication system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

 Literature Reviews 

 

2.1 Related Theories 

 2.1.1 Chaos Theory and Dynamical System 

  2.1.1.1Definition of Chaos 

  Chaos is a short word describe a behavior of dynamical [2] systems 

which appears closely to random, however, the chaotic systems can be rewritten 

through the set of nonlinear equation systems. Such the chaotic systems appear 

normally in natural environments. Chaos and randomness are generally due to the 

chaotic characteristic still confused with the random behavior. Chaos can occur only 

in nonlinear systems and characterized by a breakdown of predictability known as 

sensitive dependence on initial conditions which is the most important distinguishing 

feature of chaos. This implies that even though chaotic systems are deterministic, 

even the smallest difference in initial state can cause a dramatically difference in the 

final state. Long term predictability of chaotic systems is impossible since all 

numerical calculations have a finite non-zero error which will diverge over time and 

the predictions unreliable. The chaotic behavior contain three majors properties , (1) 

chaos can occur only in deterministic nonlinear dynamical systems,(2) Chaotic 

behavior looks complicated and irregular but has an infinite number of unstable 

periodic patterns embedded in the system and (3) chaotic behavior is sensitive to 

initial conditions 

 

  2.1.1.2 Dynamical System 

  A dynamical system is one whose state changes in time. If the changes 

are determined by specific rules, rather than being random. The system is 

deterministic; otherwise it is stochastic. The changes can occur at discrete time steps 

or continuously. This book will be concerned with continuous-time, deterministic, 

dynamical systems since they arguably best approximate the real world. This view  
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(1)X

(2)X

(3)X

(t)X

(0)X

 

 

Figure 2.1 An orbit in three-dimension phase space presented by Edward Ott [2]. 

 

represents the prejudice of most physical scientists, but it is also the case that chaos is 

relatively too easy to achieve in discrete-time systems, and hence it is less of a 

challenge to find elegant examples of chaos in such systems, and those that are found 

have less apparent relevance to the natural world. Also, discrete-time systems have 

already been extensively explored, in part because they are more computationally 

tractable. Stochastic systems mimic many of the features of chaos, but they are not 

chaotic because chaos is a property of deterministic systems. Furthermore, 

introducing randomness into a dynamical model is a way of admitting ignorance of 

the underlying process and obtaining plausible behavior without a deep understanding 

of its cause. 

  A dynamical system may be defined as a deterministic mathematical 

prescription for evolving the state of system forward in time. Time here either may be 

a continuous variable, or else it may be discrete integer-valued variable. An example 

of a dynamic system in which time (denoted t) is a continuous variable is a system of 

N first-order, autonomous, ordinary differential equation, 
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Which we shall often write in vector form as 

 

    )]([/)( txFdttdx      (2.2) 

 

where x is an N-dimensional vector. This is a dynamical system because, for any 

initial state of the system x(0), we can in principle solve the equations to obtain the 

future system state x(t) for t>0. Figure 2.1 shows the path followed by the system 

state as it evolve with time in a case where N=3. The space (x(1), x(2), x(3)) in the figure 

is referred to as phase space, and the path in phase space followed by the system as it 

evolves with time is referred to as an orbit or trajectory. Also, it is common to refer to 

a continuous time dynamical system as a flow. 

  In the case of discrete, integer-valued time (with n denoting the time 

variable, n = 0, 1, 2…), an example of a dynamical system is a map, which we write 

in vector form as 

 

),(1 nn XMx      (2.3) 

 

Where x�is N – dimensional, 	x� = (x(�),x(�),…, x(�)). Given an initial state	x�, we 

obtain the state at time n = 1 by	x� = M(x�). Having determinedx�, we can then 

determine the state at n=2 by	x�� = M(x�), and so on. Thus, given an initial 

condition	x�, we generate an orbit (or trajectory) of the discrete time system: 

	x�,	x�,…, 	x�As we shall see, a continuous time map of dimensionality N can often  
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Figure 2.2 Forced, damped pendulum presented by Edward Ott [2]. 

 

profitably be reduced to a discrete time map of dimensionality 1N via the Poincaré 

of section Technique. It is reasonable to conjecture that the complexity of the possible 

structure of orbits can be greater for larger system dimensionality. Thus, a natural 

question is how larger does N have to be in order for chaos to be possible.  For the 

case of N first-order autonomous ordinary differential equations, the answer is that 

N>3 is sufficient. Thus, if one is given an autonomous first-order system with N=2, 

chaos can be ruled out immediately. Consider the forced damped pendulum equation. 

As shown in Figure 2.2. 

 

   )2sin(sin
2

2

ftT
dt

d
v

dt

d



    (2.4) 

 

where the first term represents inertia, the second, friction at the pivot, the third, 

gravity, and the term on the right-hand side represents a sinusoidal torque applied at 

the pivot. (This equation also describes the behavior of a simple Josephson junction  



9 
 

 

Figure 2.3 Noninvertibility of the logistic map presented by Edward Ott [2]. 

 

circuit.) We ask: is chaos rule out for the equation (which is second-order and no 

autonomous) into first-order autonomous form by the substitution. 

 

,/)1( dtdx  ,)2( x     (2.5) 

.2)3( ftx   

 

(Note that, since x(1) both x(2)and appear in Eq. (2.5) as the argument of a sine 

function, they can be regarded as angles an may, if desired, be defined to lie between 

0 and 2π.) The driven damped pendulum equation then yields the following first-

order autonomous system. 

 

   

fdtdx

xdtdx

vxxxTdtdx

N 2/

/

sinsin/

)(

)1()3(

)1()2()3()1(







   (2.6) 
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Figure 2.4 A Poincare surface of section presented by Edward Ott [2]. 

 

Since 3N , chaos is not ruled out. Indeed, numerical solution shows that both 

chaotic and periodic solution of the driven damped pendulum equation is possible 

depending on the particular choice of system parameters v, T and f. We now consider 

the equation of the required dimensionality for chaos for the case of maps. In this 

case, we must distinguish between invertible and noninvertible maps. We say the map 

M is invertible if, given xn+1we can solve xn+1=M(xn)uniquely for xn . If this is so, we 

denote the solution for xn as 

 

)( 1
1


 nn xMx

    (2.7) 

 

and we callM-1the inverse of M. For example, consider the one-dimensional ( 1N ) 

map, 

 

)1()( xrxxM      (2.8) 
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which is commonly called the “logistic map”. As show in Figure 2.3, this map is not 

invertible because for a given xn+1 there are two possible values of xn from which it 

could have come. On the other hand, consider the two-dimensional map, 

 

   
.xx

,Jx)x(fx
)1(

n
)1(
1n

)2(
n

)1(
n

)1(
1n







      (2.9) 

 

This map is clearly invertible as long as 0J  

 

   
.x)x(f[jx

,xx
)1(
1n

)2(
1n

1)2(
n

)2(
1n

)1(
n










    

(2.10) 

 

  We can now state the dimensionality on maps. If the map is invertible, 

then there can be no chaos unless for N>2. If the map is noninvertible, chaos is 

possible even in one-dimensional maps. Indeed, the logistic map Equation (2.8) 

exhibits chaos for large enough r. 

  It is often useful to reduce a continuous time system (or “flow”) to a 

discrete time map by a technique called the poincaré surface of section method. We 

consider N first-order autonomous ordinary differential Equation (2.1). The “poincaré 

map” represents a reduction of the N-dimensional surface flow to an (N-1)-

dimensional map. For illustrative purposes, we take N=3 and illustrate the 

construction in Figure 2.4. Consider a solution of Equation (2.1). Now, choose some 

appropriate (N-1)-dimensional surface (the “surface of section”) in the n-dimension 

phase space, and observe the intersection of the orbit with the surface. In Figure 2.4, 

the surface of section is the plane x (3)= K but we emphasize that in general the choice 

of the intersections of the orbit with the surface can be tailored in a convenient way to 

the particular problem. Point A and B represent two successive crossing of the surface 

of section. Point A uniquely determines point B, because A can be used as an initial 

condition in (2.1) to determine B. Likewise, B uniquely determines A by reversing 

time in (2.1) and using B as the initial condition. Thus, the Poincaré map in this 

illustration represents an invertible two-dimension map transforming the coordinates 
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(��
(�)

,��
(�)

) of the n th piercing of the surface of section to the coordinates 

(����
(�)

,����
(�)

) at piercing n+1 This equivalence of an N-dimensional flow with an (N-

1)-dimension invertible map show that the requirements Equation (2.11) for chaos in 

a map follow from Equation (2.4) for chaos in flow. 

  Another way to create a map form the flow generate by the system of 

autonomous differential equations (2.2) is to sample the flow at discrete time stn =t0 + 

nT(n=1,2…),where the sampling interval T can be chosen on the basis of 

convenience. Thus, a continuous time trajectory x(t)yields a discrete time trajectory 

xn= x (tn).The quantity xn+1is uniquely determined form xn since we can use xn as an 

initial condition in Eq. (2.2) and integrate the equations forward for an amount of time 

T to determinexn+1. Thus, in principle, we have a mapxn+1 = M (xn). We call this map 

the time T map is invisible (like the Poincare map), since the differential equation 

(2.2) can be integrated backward in time. Unlike the Poincare map, the dimensionality 

of the time T map is the same as that of the flow. 

 

  2.1.1.3 Attractor 

  In Hamiltonian systems such as arise in Newton’s Equations for the 

motion of particles friction; there are choices of the phase space variables (e.g., the 

canonically conjugate position and momentum variables) such that phase space 

volumes are preserved under the time evolution. That is, if we choose an initial (t=0) 

closed (N-1)-dimensional surface S0 in the N-dimensional x-phase space, and then 

evolve each point on the surface S0forward in time by using them as initial condition 

in Eq. (2.2), then the closed surface S0evolves to a closed surface S1at some later time 

t, and the N-dimensional volumes V (0) of the region enclosed byS0and V (t) of the 

region enclosed by St are the same, V (t) = V (0). We all such a volume preserving 

system conservative. On the other hand, if the flow does not preserve volumes, and 

cannot be made to do so by a change of variables, then we say that the system is non-

conservative. By the divergence theorem, we have that 
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)2(x
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Figure 2.5 (a) The attractor is the point at original.(b) The attractor is the closed 

 dashed curve presented by Edward Ott [2]. 

 

 
ts

N xFddttdV ,/)(    (2.11) 

 

where signifies the integral over that volumes interior to the surface 1S , and.∇ ∙ F ≡

∑ ∂F�(x
(�),…, x(�))∂x(�)�

���  For example, for the forced damped pendulum equation 

written in first-order autonomous form, Eq. (2.5b), we have that vF  , which is 

independent of the phase space position x and is negative. Form (2.11), we 

have∂v(t) dt⁄ = −vV(t) so that V decreases exponentially with time,	V(t)=

exp(vt)V(0). In general∇ ∙ Fwill be a function of phase space position x. If ∇ ∙ F < 0 

in some region of phase space (signifying volume contraction in the region), then we 

shall refer to the system as a dissipative system. It is an important concept in 

dynamics that dissipative systems typically are characterized by the presence of 

attracting sets or attractors in the phase space. These are bounded subsets to which 

regions of initial condition of nonzero phase space volume asymptote as time 

increases. (Conservation dynamical systems do not have attractor; see the discussion 

of the Poincaré recurrence theorem) 
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Figure 2.6 Surface of section for a three-dimensional flow with a limit cycle

 presented by Edward Ott [2]. 

 

  As an example of an attractor, consider the damped harmonic 

oscillator, 0// 222  ydtvdydtyd  .A typical trajectory in the phase space (

dtdyxyx t /, )2()(  ) is show in Figure 2.5(a). We see that, as time goes on, the orbit 

spirals into the origin, and this true for any initial condition. Thus, in this case the 

origin, 0)2()1(  xx , is said to be the “attractor” of the dynamical system. As a 

second example, Figure 2.5(b) shows the case of a limit cycle (the dashed curve). The 

initial condition (labeled α) outside the limit cycle yields an orbit which, with time, 

spirals into the closed dashed curve on which it circulates in periodic motion in the 

t  limit. Similarly, the initial condition (labeled β) inside the limit cycle yields 

an orbit which spirals outward, asymptotically approaching the dashed curve. Thus, in 

this case the dashes closed curve is the attractor. An Example of an equation 

displaying a limit cycle attractor as illustrate in Figure 2.5(b) is the van der Pol 

Equation, 
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Figure 2.7(a) The Hénon attractor.(b) Enlargement of region defined by the rectangle 

in (a).(c) Enlargement of region defined by the rectangle in (b) presented by 

Grebogi et al. [3]. 

 

0)( 22

2

2

 y
dt

dy
y

dt

yd
     (2.12) 

 

This equation was introduced in the 1920 as a model for a simple vacuum tube 

oscillator circuit. One can speak of conservative and dissipative maps. A conservative 

N-dimensional map is one which preserves N-dimensional phase space volumes on 

each iterate (or else can be made to do so by a suitable change of variables). A map is 

volume preserving if the magnitude of the determinant of its Jacobian matrix of 

partial derivatives is one, 

 

  1/)(det[)(  xxMxJ    (2.13) 

 

For example, for a continuous time Hamiltonian system, a surface of section formed 

by setting one of the N canonically conjugate variables equal to a constant can be 

shown to yield a volumes preserving map in the remaining N-1 canonically conjugate 

variables. On the other hand, if 1)( xJ  in some regions, then we say the map is 

dissipative and, as for flows, typically it can have attractor. For example, Figure 2.6 

illustrates the Poincare surface of section map for a three-dimensional flow with a 

limit cycle. We see that for the map, the two points A1and A2 together constitute the 

attractor. That is, the orbit of the two-dimensional surface of section map  
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dθ

θ
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θ

 

Figure 2.8 The attractor of the forced damped pendulum equation in the surface of 

section )3(x modulo 02   presented by Grebogi et al. [3]. 

 

)(1 nn xMx  yields a sequence ,..., 21 xx  which converges to the set consisting of the 

two points A1and A2, between which the map orbit sequentially alternates in the limit

n . 

  In Figure 2.5, we have two examples, one in which the attractor of a 

continuous time system is a set of dimension zero (single point) and one in which the 

attractor is a set of dimension one (a closed curve). In Figure 2.6, the attractor of the 

map has dimension zero (it is the two points, A1and A2). It is a characteristic of 

chaotic dynamic that the resulting attractors often have a much more intricate 

geometrical structure in the phase space than do the examples of attractors cited 

above. In fact, according to a standard definition of dimension, these attractors 

commonly have a value for this dimension which is not an integer. In the terminology 

of Mandelbrot, such geometrical objects are fractals. When an attractor, consider the 

attractor obtained for the two-dimensional Hénon map, 

 















)1()2(
1

)2(2)1()1(
1 )(

nn

nnn

xx

BxxAx
    (2.14) 

 

For A=1.4 and B=0.3. See Hénon (1976). Note that Equation (2.14) is in the form of 

Equation (2.9). Figure 2.6 (a) shows the results of plotting 104 successive points 

obtained by Equation (2.14) with the initial transient before the orbit settles into the 
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attractor deleted. The result is essentially a picture of the attractor. Figure 2.7 (b) 

shows that a blow-up of the rectangle in Figure 2.7 (a) reveals that the attractor 

apparently has a local small-scale structure consisting of a number of parallel lines. A 

blow-up of the rectangle in Figure 2.7 (b) is show in Figure 2.7 (c) and reveals more 

lines. Continuation of this blow-up procedure would show the attractor has similar 

structure on arbitrarily small scale. In fact, roughly speaking, we can regard the 

attractor in Figure 2.7 (b) as consisting of an uncountable infinity of lines. Numerical 

computations show that the fractal dimension 0D  of the attractor in Figure 2.7 is a 

number between one and two, 26.10 D . Hence, this appears to be an example of a 

strange attractor. 

 As another example of a strange attractor, consider the forced damped 

pendulum Equation 2.5 and Figure 2.2) with 22.0v , 7.2T and 2/1f . 

Treating )3(x as an angle in phase space, we define 

 

2 modulo)3()3( xx       (2.15) 

 

and choose a surface of section 0)3( x . The modulo operation is defined as 

 

pKyK moduloy       (2.16) 

 

where p is a positive or negative integer chose to make KpKy 0 . The surface 

of section 0)3( x  is crossed at the times ,...6,4,2,0 t (This type of surface of 

section for a periodically forced system is often referred to as a stroboscopic surface 

of section, since it shows the system state at successive “snapshots” of the system at 

evenly spaced time intervals.) As seen in Figure 2.8(a) and in the blow-up of the 

rectangle Figure 2.8(b), the attractor again apparently consists of a number of parallel 

curves. The fractal dimension of the intersection of the attractor with the surface on 

section in this case is approximately 1.38. Correspondingly, if one considers the 

attracting set in the full three-dimensional phase space, it has a dimension 2.38(i.e., 

one greater than its intersection with the surface of section). 
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 2.1.2. Chaotic-Based Communication 

  2.1.2.1 Schemes requiring for chaos synchronizations. 

  A large number of communication schemes that are based on chaos 

synchronization have been proposed during the last two decades. In this section, the 

phenomena of chaos synchronization will be discussed. There are many 

interpretations and definitions of the synchronization term. Several forms of 

synchronization have been proposed for the chaotic systems. A typical and most 

widely-used scenario of the chaotic synchronization is identical synchronization, 

where the state of response system converges asymptotically to the state of the drive 

system. Recently, two forms of synchronization, called phase synchronization and 

generalized synchronization have been introduced. 

 

  Identical synchronization: Two continuous-time chaotically systems 

given as  

)(xF
dt

dx
     (2.17) 

)(xF
dt

xd



    (2.18) 

are said to synchronize identically if 0)()(lim 


txtx
t

For any combination of initial 

states )0(x and )0(x . From a communication point of view, we may think of system 

(2.17) as the transmitter and system (2.18) as the receiver. If the same initial condition 

is chosen for the transmitter and the receiver, i.e. )0()0( xx  , the both systems will 

evolve in a synchrony in the sense that, )(tx will continue being equal to )(tx for all

0t . The signal )(tst which is transmitted by a communication channel is a linear 

combination of basic functions )(tgi . We consider the case when only one basis 

function )(tg  is used and we assume that )()( tgtsi  . At the receiver side, we must 

recover the scalar basis function ))(()( txHtg  which has been derived from the state 

of the drive system (2.17). The basis function )(tg can be recovered by synchronizing 

the state of the response system identically with the drive system and applying the 
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same function )(H . In particular, if )(tx can be made to converge to )(tx then the 

estimation ))(()(ˆ txHtg  will converge to )(tg  

  Phase synchronization: This scenario of the synchronization of two 

coupled systems occurs if the difference )()( tt    between the “phases” of the two 

systems is bounded by a constant, where the “phases” )(t is some monotonically 

increasing function of time suitably chosen. 

  Generalized synchronization: This type of synchronization occurs 

mainly when the coupled chaotic systems are different, although it has also been used 

between identical chaotic systems. Chaotic systems (2.17)and (2.18) are said to 

exhibit generalized synchronization if there exists transformation Φ such that

0))(()(lim 


txtx
t

 where the properties of the transformation Φ are 

independent of the initial conditions )0(x and )0(x . If the transformation Φ is 

invertible, then )))((()(ˆ 1 txHtg    approaches )(tg . Identical synchronization is the 

particular case of generalized synchronization when Φ. is the identity. A complete 

overview of generalized synchronization is given by K. Pyragas in. In some cases the 

unauthorized receiver can use a receiver with dynamics that is different from the 

dynamics of the transmitter, and decode the message using generalized 

synchronization between transmitter and receiver with different parameters. The use 

of generalized 

 

  2.1.2.2 Chaotic masking 

  Communication schemes that are based on chaos synchronization and 

chaotic masking of the chaotic signal with a message and illustrated in Figure 2.9. In 

chaotic masking communication schemes a message signal is added to a chaotic 

signal generated by the transmitter dynamics and the sum of the two is transmitted. At 

the receiver which is synchronized to the transmitter the chaotic component is  
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F(x(t))(t)x  s(t))F(x(t),(t)y 
H(x(t))

m(t)

s(t)




H(y(t)) (t)m̂



 

Figure 2.9 Chaotic communication schemes based on chaos synchronization and 

 chaotic masking of a message with a chaotic component presented by Volodymyr 

 Lynnyk [4]. 

 

subtracted from the received signal to recover the original transmitted message. In 

Figure 2.9 the transmitter state evolution is given by the chaotic dynamics The 

transmitter state x(t) synchronizes to the receiver state y(t). A scalar H(x(t)) is 

calculated from the transmitter state x(t). A message m(t) is added to the chaotic 

scalar, and the sum of the two is transmitted. At the receiver the message m(t) is 

reconstructed by subtracting the chaotic scalar H(y(t)) from the received signal s(t). 

The message magnitude |m(t)| has to be kept small compared to the chaotic scalar 

H(x(t)) in order to maintain synchronization between transmitter and receiver(Prague, 

2010). 

 

))(( txF
dt

dx
      (2.19) 

 

A chaotic scalar H(x(t)) which is a function of the transmitter state x(t)is added to the 

message m(t). The transmitted signal s(t) is governed by 

 

)())(()( tmtxHts      (2.20) 

 

The evolution of the receiver state y(t) dynamics is given by the dynamics 
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)(0 tg

)(1 tg

)(tm

)(ˆ tm

 

 

Figure 2.10 Binary chaos shifts keying digital communication system presented by 

 Volodymyr Lynnyk [4]. 

 

))(),(( tstyF
dt

dy


    
(2.21) 

 

The transmitter state x(t) synchronizes to the receiver state y(t) at the rate of the 

largest Lyapunov exponent λ, so that 

 

tetxty  )()(     (2.22) 

 

At the receiver, the estimation )(ˆ tm  for the message m(t) is calculated by subtracting 

the estimation H(y(t)) of the chaotic component H(x(t)) that was added to the message 

at the transmitter: 
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)(ˆ tm

)(tr

 

Figure 2.11 Synchronization-error-based CSK demodulator presented by Volodymyr 

Lynnyk [4]. 

 

))(()()(ˆ tyHtstm      (2.23) 

 

The addition of a message signal m(t) to the chaotic scalar H(x(t)) at the transmitter 

can degrade the quality of the synchronization between the transmitter and the 

receiver. It is assumed that for masking, the power level of massage m(t) is 

significantly lower than that of H(x(t)) added to the message: 

 

))(()( txHtm      (2.24) 

 

  2.1.2.3 Chaos Shift Keying 

 Chaos shift keying communication scheme, often termed as parameter 

modulation scheme and illustrated in Figure 2.10. In CSK the transmitter dynamics is 

dissipative and chaotic and the transmitter state trajectory converges to a strange 

attractor. A message is transmitted by changing one or more parameters of the 

transmitter dynamics which results in a change of the attractor dynamics. At the 

receiver the message is decoded by estimating to which message the received chaotic 

attractor corresponds. The fundamental principle of the CSK can be described in a 

more detail as follows. The transmitter consists of M chaos generators. In the case, 

when we use a binary alphabet, only two chaos generators are needed. The Figure  
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)(tr
dt

sT (.)

dt
sT (.)

)(0 blTa

)(1 blTa

)( blTy)(ˆ tm

 

 

Figure 2.12 Block diagram of coherent correlation CSK receiver presented by 

Volodymyr Lynnyk [4]. 

 

2.10, the transmitter consists of two chaos generators a and b, producing signals )(0 tg

and )(1 tg , respectively. If a binary symbol “0”isto be sent during the interval [(l –1)Tb, 

lTb], g0 is transmitted by the communication channel, and if the binary symbol “1” is 

to be sent, g1 is transmitted. Here, Tb is the bit duration and l is a number of the 

transmitted symbol. The CSK scheme is based on the self-synchronization property of 

the chaotic systems. In the Figure 2.11 the receiver structure based on the Self-

synchronization property is shown. The incoming signal r(t) is used for drive two self-

synchronization subsystems a and b, which are matched to a and b chaos generators, 

respectively. When the transmitted signal isgo(t), the subsystem a will be 

synchronized with the incoming signal while is not, and when the transmitted signal is 

g1(t), the subsystem b will be synchronized with the incoming signal. Therefore, by 

measuring the error between the incoming signal and the output of the self-

synchronization subsystems, the transmitted symbol can be recovered. In other words, 

the receiver needs to determine to which of the allowed attractors the transmitter 

dynamics converged, based on the received signal r(t). The transmitted signal s(t) is 

typically a scalar, while the transmitter dynamics can be of high dimension. The  
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dt
sT (.)

)(ˆ tm

)(tr

 

Figure 2.13 CSK receiver based on bit energy estimator presented by Volodymyr 

Lynnyk [4]. 

 

transmitter can use coherent detection techniques. In other words, the receiver needs 

to determine to which of the allowed attractors the transmitter dynamics converged, 

based on the received signal r(t). The transmitted signal s(t) is 3typically a scalar, 

while the transmitter dynamics can be of high dimension. The transmitter can use 

coherent detection techniques 

 First, the Coherent detection is investigated. In communication the 

term coherent detection implies that the shape of the transmitted waveforms is known 

to the receiver which can correlate the noisy received signal with its expected 

waveform, to maximize the signal to noise ratio at the output of the correlator. 

Coherent detection of the chaotic signals using correlator-based receivers was studied 

in detail. Receivers in which exact copies of all basis functions are known are called 

coherent receivers. The block diagram of a correlator-based receiver using binary 

chaos shift keying modulation is shown in the Figure 2.12.The two synchronizable 

chaotic circuits in the receiver attempt to reproduce the two basic functions, given the 

received noisy sample function r(t). An acquisition time Ts is assumed for the 

synchronization circuits to lock to the incoming signal. The recovered basis functions 

are then correlated with the received signal for the remainder of the bit duration Tb. 

Then, the outputs of the correlator are sampled and compared. 

  In the case of non-coherent demodulation the receiver does not know 

the shape of the transmitted chaotic basis signals. Detection has to be done based on 

some distinguishable property of the basis signals. Different attractors may differ in 

variance, meaning of the absolute value, dynamic range, and many other statistical 
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properties. The main advantage in the using of the non-coherent decoding methods is 

that the receiver is not required to synchronize with the transmitter. It only needs to 

determine to which one of the allowed attractors the trajectory has converged. In 

addition, the non-coherent receivers are often simpler than their coherent counterparts. 

Suppose chaotic basis signals with different bit energies are used to transmit the 

binary information. If a binary “0” is to be sent during the interval Tb, a chaotic basis 

signal g0(t) with mean bit energy E0 is transmitted, and if binary “1” is to be sent, a 

chaotic basis signal g1(t) with mean bit energy E1 is transmitted. The required chaotic 

signals can be generated by two chaos generators with different average bit energies. 

As alternative, the same chaos generator can be used to produce two signals of 

different bit energies by using two amplifiers of different gain. In both cases, the bit 

energy can be estimated by a correlator at the receiver, as shown in Fig. 2.13. Assume 

that only additive noise corrupts the transmitted signal and the noise power limited by 

the receiving filter,i.e., 

)()()( tntstr      (2.25) 

 

Where, s(t) denotes the transmitted signal and n′(t) is the noise component at the 

output of the receiving filter. For the lth  received symbol, the energy bit Es(lTb), is 

defined by 
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In the noise-free case, the second and third integrals in (2.24) are zero. Therefore, 

)( bs lTE  is equal to either one of the following two bit energies: 
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    (2.27) 

 

In convectional modulation schemes, the bit energy is fixed for a given symbol. 
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dt
sT (.)

)(ˆ tm

)(1 lTE

 

Figure 2.14 Block diagram of non-coherent COOK modulation scheme presented by 

Volodymyr Lynnyk [4]. 

  

  2.1.2.4Chaos-On-Off-Keying 

 Chaos-on-off-keying (COOK) is only a special case of the chaos shift 

keying scheme (CSK) with non-coherent demodulator. It uses one chaos generator, 

which is switched “on” or “off” to transmit symbols ”1” and”0”, respectively, as 

shown in Fig.  

2.14. The major disadvantage of the CSK system is that the threshold value of the 

decision circuit depends on the noise level also appears in COOK. This means that 

using COOK wean maximize the distance between the elements of the signal set, but 

the threshold level required by the decision circuit depends on the noise level. The 

threshold can be kept constant by applying the differential chaos shift-keying method. 

 

  2.1.2.5 Differential Chaos Shift Keying 

 In differential chaos shift keying scheme, every bit to be transmitted is 

represented by two chaotic sample functions. The first sample function serves as a 

reference while the second one carries the information. Bit “1” is sent by a chaos 

generator twice in succession, while for bit “0”, the reference chaotic signal is 

transmitted, followed by an inverted copy of the same signal. Thus for the lth  symbol 

period, we have 
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Figure 2.15 Block diagram of differential chaos shift keying modulator scheme 

presented by Volodymyr Lynnyk [4]. 

 

if “1” is to be transmitted, and 









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bb

lTt1/2)Tfor(l/2),Tg(t-

1/2)T(lt1)Tfor(lg(t),
s(t)    (2.29) 

 

if “0” is to be sent. Fig. 2.15 shows a block diagram of a DCSK transmitter. Since 

each bit is mapped to the correlation between successive segments of the transmitted 

signal of length Tb/2, the information signal can be recovered by a correlator. A block 

diagram of a DCSK receiver is shown in Fig. 2.15. The output of the correlator of the

lth  symbol duration is given by where )(tn  is the noise component at the output of 

the receiving filter. The second term in Eq. (2.28) can be positive or negative, 

depending on whether a “1” or “0” has been transmitted. Also, all the other integral 

terms have a zero meaning. Thus, the threshold detector can be set optimally at zero; 

the decision threshold is zero independently of the noise  
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Figure 2.16 Block diagram of differential chaos shift keying demodulator presented 

by Volodymyr Lynnyk [4]. 

 

spectral density (Es/N0). By contrast with the CSK and COOK schemes discussed in 

Section 2.1.2.4 and Section 2.1.2.5, DCSK is an antipodal modulation scheme. The 

main advantage results from the fact that the reference and information-bearing 

sample functions pass through the same channel so they undergo the same channel 

distortion. DCSK can also operate over time-varying channel if the parameters of the 

channel remain constant for the bit duration Tb. The main drawback of DCSK, 

however, is that it can only transmit at half of the data rate of the other systems 

because it spends half of the time transmitting the non-information-bearing reference 

samples [49]. One way to improve the data rate is to use a multilevel modulation 

scheme. Alternatively, one may solve the estimation problem directly by modifying 

the modulation scheme such that the transmitted energy is kept constant. Frequency-

modulated differential chaos shift keying scheme is an example of the latter approach. 

 

  2.1.2.6 Frequency-Modulated Differential Chaos Shift Keying 

  The objective of frequency-modulated differential chaos shift keying 

(FMDCSK)is to produce a wideband chaotic signal with constant. The FM-DCSK 

was proposed by Kolumbanet. al. In this scheme, a chaotic frequency modulated 

signal generator is needed. The chaotic signal to be input of an FM modulator. A 

block diagram of a FM-DCSK generator is shown in Figure 2.17. The output of this  
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Figure 2.17Chaos frequency-modulated signal generator presented by Volodymyr 

 Lynnyk [4]. 
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Figure 2.18 Block diagram of the Quadrature chaos shift keying scheme Modulator 

presented by Volodymyr Lynnyk [4]. 

 

FM modulator is chaotic, band limited, and its power spectral density is uniform. The 

operation of the demodulator is the same as in DCSK, the only difference being that 

not the chaotic, but the FM modulated signal is the input to the DCSK modulator 

 

 2.1.2Quadrature Chaos Shift Keying 

 In authors proposed a multilevel version of the differential chaos shift keying 

(DCSK), the so-called Quadrature chaos shift keying (QCSK) communication scheme 

with double data and higher spectral efficiency. In QCSK a two-bit symbol is encoded 

as a linear combination of two orthogonal waveforms, sine and cosine. Figure 2.18 

and Figure 2.19shows a block diagram of the modulator and demodulator of the 
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QCSK communication system, respectively. In this diagram, each transmitted symbol 

consists of two bits of the information. Here, the bit duration is Tb and the symbol 

duration is Ts = 2Tb. The modulation scheme can be described as follows. Let c(t) be 

a chaotic reference signal defined for t∈ [0, Ts/2]. This reference signal has a zero 

mean value. Next, for producing of d(t) we use the Ts/2-delayed version of reference 

signal c(t). Further, we construct the complementary signal e(t) by shifting the phase 

of all frequency components in d(t) by π/2, which is accomplished by standard digital 

signal processing(DSP) techniques. In the QCSK modulation scheme, c(t) is sent 

during the first half symbol period, i.e., [0, Ts/2] while the information-bearing 

signals(t) is sent during the second half symbol period, i.e., [Ts/2, Ts).Here, s(t) is a 

linear combination of two orthogonal waveforms d(t) ands(t). 

 

)()()( tsqtdqts sc      (2.30) 

 

where qc and qs are two bits of information to be sent within the symbol period Ts. At 

the demodulator, d(t) and e(t) are the first estimated from the noise version of the 

reference signal )(ˆ tc Suppose the estimated d(t)and e(t) are ��(�)and )(ˆ te  

respectively. Then, demodulation can be done by correlating the signal received in the 

second half symbol period, i.e., [Ts/2, T2), with )(ˆ td and )(ˆ te . Based on the 

correlation results a decision on the symbol si (two bits of information) received is 

taken by decision circuit according to estimated value qc + iqs. The QCSK scheme has 

the advantage over DCSK of double data rate for a given bandwidth with the same bit 

error rate performance. 

 

2.2 Literature review 

 2.2.1 Chaotic and Dynamical Systems 

Table 2.1 Show literature review of chaos jerk function, which are initially 

reviewed as Chaos theory. Six particularly related chaos theory for secure 

communication have previously been proposed by Ken Kiers and Dory 

Schmidt(2003), Vinod Patidar and K KSud(2005), GuoboXie and et al.(2008), 
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LjubišaM. Kocić and Sonja Gegovska-Zajkova (2009) and Buncha Munmuangsae and 

et al. (2011) 

  2.2.1.1 Precision measurements of a simple chaotic circuit 

  Ken Kiers and Dory Schmidt [5], describe a simple nonlinear electrical 

circuit that can be used to study chaotic phenomena. The circuit employs simple 

electronic elements such as diodes, resistors, and operational amplifiers, and is easy to 

construct. A novel feature of the circuit is its use of an almost ideal nonlinear element, 

which is straightforward to model theoretically and leads to excellent agreement 

between experiment and theory. The circuit in Fig. 2.19 contains three successive  

 

Table 2.1 Summary of existing chaos jerk functions. 

Authors Year Title 

Ken Kiers and Dory 

Schmidt 

 

2003 Precision measurements of a simple chaotic 

circuit 

Vinod Patidar and 

K KSud 

 

2005 Bifurcation and chaos in simple jerk 

dynamic 

uoboXie and et al. 2008 Generation of multidirectional multi-scroll 

attractors under the third-order Jerk system 

 

Ljubiša M. Kocić 

and Sonja 

Gegovska-Zajkova 

 

2009 On a Jerk dynamical systems 

Buncha 

Munmuangsae and 

et al 

2011 Generalization of the simplest autonomous 

chaotic system 

 

inverting integrators with outputs at the nodes labeled V2, V1, and x,as well as a 

summing amplifier with its output at V3. If we use Kirchhoff’s rules at nodes a-d 
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Figure 2.19 Schematic diagram of the circuit presented by Ken Kiers and Dory 

Schmidt [5]. 
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where the dots denote derivatives with respect to the dimensionless variable�̃ =

�/(��). 
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We have derived the recursive proportional feedback algorithm and shown that it can 

be used to control chaotic oscillations in the Kiers, Schmidt, and Sprott electronic 

circuit. Control is achieved with small perturbations and the mean oscillation 

maximum during  
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Figure 2.20 Strange attractor of the jerk dynamical system having quadratic on-

linearity for A = 0:57 and B = 0:56. Two different projections of the strange 

attractor are shown in (a) and (b). The Poincare surface of the section defined by 

y = 0, z < 0 and corresponding to the one-dimensional Poincare map (c) and (d) 

presented by VinodPatidar and K KSud [6]. 

 

 Control is well within the uncertainty of the target fixed point. The 

values of the coefficients used in the recursive proportional feedback algorithm were 

calculated from experimentally measured values of the output voltage of the circuit 

during pre-control measurements. Recursive proportional feedback is suitable for 

highly dissipative systems, of which the KSS circuit is an example. Simple 

proportional feedback is also suitable for some highly dissipative systems, but cannot 

be used for the KSS circuit because the movement of the system’s chaotic attractor 

through phase space depends on both the current and previous perturbations. 

 

 2.2.1.2 Bifurcation and chaos in simple jerk dynamic 

  Vinod Patidar and K KSud [6], In recent years, it is observed that the 

third-order explicit autonomous differential equation, named as jerk equation,  
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Figure 2.21 Behavior of the jerk dynamical system having quadratic non-linearity for 

a fixed value of parameter B = 0:56. (a) The bifurcation diagram showing period 

doubling route to chaos, (b) the two Lyapunov exponents and (c) the Lyapunov 

dimension presented by VinodPatidar and K KSud [6]. 

 

represents an interesting sub-class of dynamical systems that can exhibit many major 

features of the regular and chaotic motion. In this paper, we investigate the global 

dynamics of a special family of jerk systems�⃛ = −��̈ + ��̇ + �(�).Where�(�)is a 

non-linear function, which is known to exhibit chaotic behavior at some parameter 

values. We particularly identify the regions of extensive Lyapunov spectra calculation 

in complete parameter space. We also investigate the effect of weakening as well as 

strengthening of the non-linearity in the G(x) function on the global dynamics of these 

jerk dynamical systems.Form two fixed points (±1; 0; 0)  

 

)1( 2  xBxxAx      (2.32) 

 

As a result, we reach to an important conclusion for these jerk dynamical systems that 

a certain amount of non-linearity is sufficient for exhibiting chaotic behavior but 

increasing the non-linearity does not lead to larger regions of parameter space 

exhibiting chaos. 

 

  2.2.1.3 Generation of multidirectional multi-scroll attractors under  the 

third-order Jerk system 

  GuoboXie and et al. [7], In this paper, An approach for generating 

multi directional grid chaotic attractors from a third-order Jerk system is proposed via 

constructing a series of staircase functions, including two-directional and three- 
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Figure 2.22 2×2×2 grid-scroll chaotic attractors presented by GuoboXie and et al. [7]. 

 

 

Figure 2.23 3×3×3 grid-scroll chaotic attractors presented by GuoboXie and et al. [7]. 

 

directional multi-scroll chaotic attractors. Its dynamical behaviors are investigated by 

means of theoretical analysis as well as numerical simulation. In order to extend the 

scrolls to the z -direction, another nonlinear function f 3(z) is introduced to the second 

and the third equations of, leading to 

 

))()()((

)(

)(

321 zFyFxFzyxaz

yFzy

xFyx













   

(2.33) 

 

where 0  , system parameters M and N and L are integers. So we can generate 

M×N×L scrolls from (2.31) and (2.32)as shown in Figs. 2.22In this papers, a new 

technique for generating × m× l scroll attractors under a third-order Jerk system has 

been proposed, analyzed, simulated. One nonlinear piecewise function is used in this  
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Figure 2.24 The x(t) diagram and the DFT confirms chaotic element with A= 1.3; k = 

1; λ1= 0.0338091presented by Ljubiša M. Kocić and Sonja Gegovska-Zajkova[7]. 

 

Jerk system. By setting the constants M, N and L in this function, different numbers of 

n×m×l -scroll attractors can be created as designed for Jerk system 

Where a ε [0.47, 0.96] , F1(x) and F2( y) and F3(z) are the staircase function series 

which are described as follows: 
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  2.2.1.4 On Jerk dynamical systems 

 Ljubiša M. Kocić and Sonja Gegovska-Zajkova[8], chaotic systems of 

J.C. Sprott emanated from electric circuits turn to be attractive examples of week 

chaos the only form of chaos that eventually might be acceptable in sensible 

applications like automatic control or robotics. Here, two modifications of a 3D 

dynamic flow, known as jerk dynamical system of J.C. Sprott are considered. The 

left-semi quadratic system�⃛ = −��̈ + ��(�̇)− �. The system preserves chaotic 

regimeof the original Sprott setting �⃛ = −��̈ + �̇� − � for lesser values of A and 

bigger slopevalues k. The choice A = 1.3 and k = 1 produces recognizable phase 

diagrams, given in two projections in Fig. 2.24. The x(t) diagram and the DFT 

confirms chaotic element, and the Lyapunov coefficient is λ1 = 0.0338091.One of the 

simplest dynamic flows that still exhibits chaotic behavior is Sprott’s jerky system, 

given by equations�⃛ = −��̈ + �̇� − �, where ψ (ξ) = ξ2. This system "works" on the 

"edge" of chaos, which is evident from its small first Lyapunov exponent (λ1 = 

0.0551). Tracing for simpler function ϕ that yet supplies chaotic dynamics, Sprott and 

Linz tried with ψ (ξ) = |ξ|, the continuous function that represents a kind of piecewise 

linear approximation of quadratic function. In this case, no chaos has been detected. 

The present note deals with the “hybrid” case embodied in two semi-quadratic 

functions, the left- and the right one, see Fig.2.24 for the graphs. Surprisingly, the left 

semi-quadratic function gk(ξ) produces chaos for some values of the larger part’s 

variable slope k, and the corresponding value of A, while the symmetric, right semi-

quadratic function hk(ξ) leads only to a non-chaotic dynamics. 

 

  2.2.1.5 Generalization of the simplest autonomous chaotic system 

  Buncha Munmuangsae and et al. [9], an extensive numerical search of 

jerk systems of the form �⃛ + �̈ + �̇ = �(�) revealed many cases with chaotic 

solutions in addition to the one with �(�̇)= ±��that has long been known. 

Particularly simple is the piecewise-linear case with�(�)= �(1 − �)����	 ≥ 1 and 

zero otherwise, which produces chaos even in the limit of ∝→ ∞ the dynamics in this 

limit can be calculated exactly, leading to a two-dimensional map. Such nonlinearity 

suggests an elegant electronic circuit implementation using a single diode. 
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Figure 2.25(a) Attractor form equation and (b) The largest Lyapunov exponent and 

bifurcation diagram of equation for f (˙x)=−A exp(x) with 0 < A <0.5 presented 

by Buncha Munmuangsae and et al. [9] 

 

This raises the question of whether there are other simple chaotic systems of 

the form )(xfxxx    and )exp()( xAxf   with A = 0.1, is particularly 

interesting. It has the curious feature of having chaotic solutions in the limit of A→0 

as is evident from its largest Lyapunov exponent and bifurcation diagram (the local 

maxima of x) shown in Figure 2.25, which shows a period-doubling route to chaos. 

The attractor grows in size as A→0 since a larger �̇ is requiredto achieve the same 

nonlinearity as A decreases The equilibrium point for this case has Eigenvalue = 

.1.5193, 0.2596 ± 0.7686i, which satisfies the Shilnikov condition since the absolute 

value of the real Eigenvalue is greater than the absolute value of the real part of the 

complex Eigenvalue, providing a proof of chaos. For this value of A, the largest 

Lyapunov exponent is near its maximum with a Lyapunov exponent spectrum of 

(0.1016, 0, .1.1016) and a Kaplan–Yorke dimension of DKY = 2.0922.In conclusion, 

several simple chaotic systems of the formx⃛ + ẍ + x = f(ẋ)have been studied. They 

have similar maximum valuesof their largest Lyapunov exponents and corresponding 

Kaplan.Yorke dimensions. Furthermore, all cases have F�(x)> −1with spiralsaddles 

of index 2. Particularly simple is the piecewise-linear casewith f(ẋ)= α(1 − ẋ)for  
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Table 2.2 Show summarize application chaotic system for communication 

Author Year Title 

Shihua Chen 

and et al. 

2003 Adaptive synchronization of uncertain Rössler hyper 

chaotic system based on parameter identification 

 

Pehlivan and Y. 

Uyaroglu 

2007 Simplified chaotic diffusion less Lorentz attractor and its 

application to secure communication systems 

 

GaoBingkun 

and et al. 

2009 The application research of Hyper chaos encryption in 

security communications 

 

Said SADOUDI 

and Mohamed 

Salah Azzaz 

2009 Hardware Implementation of the Rössler Chaotic System 

for Securing Chaotic Communication 

 

 

Ihsan Pehlivan 

and et al. 

2009 Design and simulations of the Arneodo attractor’s chaotic 

oscillator and signal masking circuit 

 

Ihsan Pehlivan 

and et al. 

2010 Phase synchronization in mutually coupled chaotic 

Josephson Junctions: Effect of asymmetry and 

incommensurate frequencies 

 

ẋ ≥ 1and zero otherwise, which produces chaos even in the limit of α → ∞ 

where the trajectory encountersa  

reflecting boundary atẋ = 1	.This system can be calculated exactly, leading to a two-

dimensional map identical to the one 

 

 2.2.2 Synchronization in secure communication system 

Table 1.2 Show application chaotic systems for communication, which is 

initially reviewed as purpose chaotic system for communication. Nine mainly linked 

chaos application chaotic system for communication have previously been proposed 

by Shihua Chen and et al.(2003), Pehlivan and Y. Uyaroglu(2007), Dandan Zhao and 
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et al.(2008), GaoBingkun and et al.(2009), Said SADOUDI and Mohamed Salah 

Azzaz(2009), Ihsan Pehlivan and et al. (2010), Jiejing Liu and Yanli Zhang(2011) and 

Jing Pan and Qun Ding(2011) 

 

  2.2.2.1 Adaptive synchronization of uncertain Rössler hyper chaotic 

system based on parameter identification 

  Shihua Chen and et al. [10], In this letter, an approach of adaptive 

synchronization and parameters identification of uncertain Rössler hyper chaotic 

system is proposed. The suggested tool proves to be globally and asymptotically 

stable by means of Lyapunov method. With this new and effective method, 

parameters identification and synchronization of Rössler hyper chaotic with all the 

system parameters unknown, can be achieved simultaneously. Theoretical proof and 

numerical simulation demonstrate the effectiveness and feasibility of the proposed 

technique. Rössler hyper chaotic system was provided by Rössler in describing 

dynamics of some hypothetical chemical reaction and is a first example of hyper 

chaotic system with two positive Lyapunov exponents. The nonlinear differential 

equations that describe Rössler hyper chaotic system are 
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According to the drive system and the controlled response system, we get the error 

dynamical system 
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Figure 2.26 Graphs of synchronization errors varying with time. e1 (t) = xs (t) − xm(t), 

e2 (t) = ys (t) − ym(t), e3 (t) = zs (t) –zm(t) and e4(t) = ws (t) − wm (t) presented by 

Shihua Chen and et al. [10]. 

 

 

 

Figure 2.27 Graphs of parameters identification results presented by Shihua Chen and 

et al. [10]. 
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 In order to verify the effectiveness of the proposed method, let the master 

signals are from Rössler hyper chaotic system with system parameters a =0.25, b = 3, 

c = 0.5, d = 0.05 and initial condition (−20, 0, 0, 15). Suppose initial condition of the 

controlled Rössler hyper chaotic system is(5.0, 7.0, 9.0, and 11.0) and the unknown 

parameters have zero initial conditions. Numerical simulation shows that parameters 

identification and adaptive synchronization are achieved successfully. Figure. 2.26 

display the results. In this Letter, we introduce an adaptive synchronization and 

parameters identification method for Rössler hyper chaotic system with all the system 

parameters unknown. With this method one can achieve synchronization and 

parameters identification simultaneously. Lyapunov direct method is used to prove 

the stability of the method. Numerical experiment shows the effectiveness of the 

proposed method.  

 

  2.2.2.2 Simplified chaotic diffusion less Lorentz attractor and its 

application to secure communication systems 

  Pehlivan and Y. Uyaroglu [11], this show Diffusion less Lorentz 

equations a simplified one-parameter version of the well-known Lorentz model. Also, 

it was attained in the limit of high Rayleigh and Prandtl numbers, physically 

corresponding to diffusion less convection. A simplified, one-parameter version of the 

Lorentz model called diffusion less Lorentz is proposed, which is suitable for chaotic 

synchronization and masking communication circuits using Matlab/Simulink and 

Spice programmers. It is also suitable for a real electronic experimental circuit. This 

situation is the most interesting case of the two and it is limited to the corresponding 

parameter regime equation 2.34 reduce to 
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which has a hyper chaotic attractor when a = 0.25, b = 3, c = 0.5, d = 0.05. For 

convenience, we denoted the master Rössler hyper chaotic system 
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Figure 2.28 Spice circuit presented by Pehlivan and Y. Uyaroglu [11]. 

 

 

 

Figure 2.29 Spice simulation results (a) x, y phase portrait (b) x, z phase portrait 

presented by Pehlivan and Y. Uyaroglu [11]. 

 

 The single-parameter equations 2.37are referred to in the remainder of this 

study as the DLE. System 2.37werederived (with R = 1) during a search for chaotic 

low-order systems of the form  F(x) with F(x) algebraically as simple as possible. The 

Lyapunov exponents of the DLE are 0.115, 0, and 21.115, namely, only one positive 

LE ispresent.Fig.2.8 shows the circuit schematic for implementing the DLE Equation 

2.27. We use TL081 op-amp, the analog devices AD633JN multipliers, appropriate  
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Figure 2.30Matlab–Simulink models presented by Pehlivan and Y. Uyaroglu [11]. 

 

 

Figure 2.31Result phase portraits presented by Pehlivan and Y. Uyaroglu [11]. 

 

valued resistors and capacitors for Spice simulations. The circuit is supplied +12 V 

power supplies. Acceptable inputs to theAD633 multiplier IC are 210 to t10 V. The 

ResistorsR1.R7 are all shown with nominal values in Figure 2.28 also show Spice 

simulation and results of this circuit. 

  Areal experimental electronic circuit is implemented for parameter R = 

1 and for the initial conditions x0 = 1,y0 = 21 and z0 = 0.01, and the oscilloscope  
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Figure 2.32Oscilloscope outputs of the electronic circuit (a) x, y phase portrait(b) x, z 

phase portrait presented by Pehlivan and Y. Uyaroglu [11]. 

 

 

 

Figure 2.33Block diagram chaotic synchronize presented by Pehlivan and Y. 

Uyaroglu [11]. 

 

outputs are attained as shown in Figure 2.29. Conclusions from Matlab-Simulink, 

Spice simulations and also real electronic circuit results of DLE are identical. 
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Figure 2.34 Simulink modeling presented by Pehlivan and Y. Uyaroglu [11]. 

 

 

 

Figure 2.35 Simulation output presented by Pehlivan and Y. Uyaroglu [11]. 
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Figure 2.36Spice circuit presented by Pehlivan and Y. Uyaroglu [11]. 

 

 

Figure 2.37 simulation outputs (a) Drive system x signal and response system xr 

signal against time. (b) Synchronization between x and xr presented by Pehlivan 

and Y. Uyaroglu [11]. 
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Figure 2.38Real electronic circuit results of DLE (a) Real electronic circuit 

realization of the DLE’s Pecora–Carroll synchronization (b) Unsynchronized 

output before synchronization (c) 45̊ line after synchronization presented by 

Pehlivan and Y. Uyaroglu [11]. 

 

 Synchronization between chaotic systems has received considerable 

attention and led to communication applications. There are two major methods for 

coupling and synchronizing identical chaotic systems, the cascading method and the 

one-way coupling method. With these methods, a message signal sent by a transmitter 

system can be reproduced at a receiver under the influence of a single chaotic signal 

through synchronization. This paper presents the study of numerical simulation of 

chaos synchronization for chaotic DLE. The Pecora–Carroll synchronization method 

is used and drive and response subsystems were constructed. Fig. 2.33 shows the 

block diagram of a cascaded synchronization system, illustrating simulation modeling 

and outputs of Pecora–Carroll synchronization of DLE. Synchronization of chaotic 

motions among coupled dynamical systems, indispensable in communications is an 

important generalization from synchronization of the linear system. The idea of the 
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methods is to reproduce al1 the signals at the receiver under the influence of a single 

chaotic signal from the driver. Therefore chaos synchronization can potentially be 

applied in communications and signal processing. However, to build a secure 

communications system, some other important factors need to be considered. 

 This paper focuses on the identical synchronization of DLEs and its 

applications in signal masking and secure communications. The Pecora–Carroll 

identical cascading synchronization method is used. The behavior of the response 

system depends on the behavior of the drive system, but is not invertible. We have 

demonstrated in simulations and also proved in real electronic circuits that chaos can 

be synchronized and applied to secure communications. We suggest that this 

phenomenon of chaos synchronicity may serve as the basis for little-known DLEs to 

achieve secure communication. Chaos synchronization and chaos masking were 

realized using Matlab–Simulink, Spice programs and also real electronic experimental 

applications. Related figures in Figs. 2.34-2.37 for synchronization and Figures. 2.34, 

2.35 and 2.36 for masking communication show that Matlab–Simulink, Spice outputs 

and also real electronic experimental application results prove the same conclusions. 

 

  2.2.2.3 The application research of hyper chaos encryption in security 

communications 

  GaoBingkun, Li Wenchao and Hu Yue [12], Against the nature of 

Hyper chaos dynamic system, a modified hyper-chaotic sequence encryption 

algorithm was given. This method used the dynamic system of TNC Hyper chaos. 

And proved to have the effective ability of exhaustive attack and anti-nonlinear 

reorganization; Used Sub-NY Quist sampling interval to increase the key space, this 

method has the ability of anti-nonlinear reorganization attack; realized the algorithm’s 

encryption and decryption by using MATLAB simulation platform and got some 

satisfactory results which make out that the arithmetic is faster and easier 

implementation by software, had a large key space and so on. 

 In hyper chaos equation of 4-dimensional, such as Chen circuit 

equation, MCK circuit equation, Rössler equation, TNC (Tamasevicius Namajunas 

Cenyss) circuit equation and so on, we select to use TNC circuit. It can deal with a 

number of system variables then produce a sequence cryptogram. Sequence  
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Figure 2.39 Attractors of TNC Hyper chaos circuit presented by GaoBingkun, Li 

Wenchao and Hu Yue[12]. 

 

cryptogram designs flexible and has a large design space. It can enhance security, 

provide possibilities of a solution to improve the limited effect which result in short 

cycles, provide a guarantee for improving anti-exhaustive attacks. It can provide a 

large key space. TNC circuit equation has a large number of system variables and 

parameters which can be used as the seed key for the sequence cryptosystem. The 

algorithm not only has a large key space but also can improve the security. When 

parameter of hyper chaos equation satisfied the certain conditions, the system emerges 

in the ultra-chaotic state; it represents complex, disorder and randomness. Fig.2.38 is 

the simulation graph of hyper chaos attractor diagram, it shows TNC hyper chaos 

system has not only more extensive parameters than others but also has more complex 

phase diagram, its path presents much better non- periodicity which makes attackers 

more difficult to analysis, moreover, it simulates quickly .Therefore we select 4-

dimensional TNC hyper chaos system to produce encryption sequences, the equation 

described as follows: 
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when x4-1<0, h(x4-1) =0, otherwise, h(x4-1) =1. Assume the system parameters as 

a1=0.7, a2=3.0, a3=3.0, a4=-30, the initial state as x(0)=[0.5, 0.5, 0.5, 0.5], 

temporality, the system in the state of hyper chaos. Simulation of TNC hyper chaos 

strange attractor shows as Fig. 2.39. 

 In this paper, a modified hyper-chaotic sequence encryption algorithm 

and encryption/decryption model is given. We use hyper chaos sequence as 

encryption keys which produced by TNC hyper chaotic system. We use the method of 

statistical characteristics to apply the hyper chaos encryption technology to the 

communications in WLAN. And successfully obtain the data of encryption/decryption 

by the means of Matlab simulation platform. The results show that: The sequences 

which produced by TNC hyper chaos encryption systems have the ability of anti-

attack and provide a large number of key spaces; Sub-Nyquist sampling interval can 

resist the attacks of reconstructed linear and expand key space; The new method of 

generated Hyper chaotic sequences will be beneficial to improve resist choice attack; 

Longer length of equivalent key make the encrypt system stronger to comfort the 

attacks; The design of the parameters are not only meet the requirements of 

encryption in WLAN security but also get more improvement. Although there are 

many advantages to use hyper chaos in security communications, there still many 

theoretical and practical application problem need to be study and discuss. 

 

  2.2.2.4 Hardware Implementation of the Rössler Chaotic System for 

Securing Chaotic Communication 

  Said Sadoudi and Mohamed Salah Azzaz [13], In this paper, a real-

time implementation of the Rössler chaotic system in a Field Programmable Gate 

Array(FPGA) is presented. At first, we use directly the VHDL language for the 

hardware description of the system, contrary to some previous works where the Xilinx 

system generator of MATLAB-Simulink used to generate the VHDL code. Then, 
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after a step of optimization, to reduce the resources of the circuit target Virtex-II 

xcv1000-4fg456, we implement the chaotic system on FPGA. The real-time chaotic 

signals obtained at the output of the FPGA are then compared with those obtained by 

MATLAB and Models simulation, in order to validate our results. However, the goal 

of this work is to introduce this chaotic system in an eventual secure digital chaotic 

communication system. O. E. Rössler introduced his equations system in1976. 

Therefore, a great interest is given for this kind of chaotic system. This system has 

only single non-linear term (zx) contrary to the Lorenz system and is given as follow: 
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    (2.39) 

 

The original classical Rössler chaotic system has such parameters a = b = 0.2, c = 5.7. 

The corresponding chaotic signals and strange attractor in the phase plan (x-z) and (x-

y) are represented in figure 2.40 and 2.41 and 2.42 respectively. 

 

 

 

Figure 2.40 Chaotic signals of Rössler generator presented by Said Sadoudi and 

Mohamed Salah Azzaz [13]. 
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Figure 2.41 Rössler strange attractor (phase plan x-z)presented by Said Sadoudi and 

Mohamed Salah Azzaz [13]. 

 

 

 

Figure 2.42 Rössler strange attractor (phase plan x-y) presented by Said Sadoudi and 

Mohamed Salah Azzaz[13]. 

 

From the scheme, we note that we have two principal blocks. The Automat block and 

the Rössler block. The first one represents the head of the system. In fact, it directs the 

totality of the tasks of the system. It orders the Rössler block to solve the system with 

the RK-4 method. Once the chaotic signals (x, y and z 32 bits) are obtained, it  
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Figure 2.43 Scheme of the digital implementation of Rössler chaotic system on 

FPGA presented by Said Sadoudi and Mohamed Salah Azzaz [13] 

 

truncate each one of them and then given on 8 bits, because of the DAC (AD7569) 

available in our laboratory works on 8 bits. Just after, the truncated chaotic signals are 

sending to the DAC and the process is repeating in time. Therefore, the real-time 

chaotic signals obtained at the output of the DAC can be visualized on an oscilloscope 

to confirm the exactitude of the results 

A new and simple method for real-time implementation in the FPGA circuit, 

of continuous chaotic generator systems, is developed. The developed method 

consists of using only and directly the VHDL language to obtain exploitable real-time 

chaotic signals at the output of the FPGA circuit. Contrary to some methods existing 

in the literature, which uses initially the Xilinx System generator tools of 

MATLAB/SIMULINK to generate the VHDL code, and then pass to the 

implementation step. The real-time Rössler chaotic signals  

Obtained are almost identical to those of the simulations under Matlab and Models. 

However, with this implementation we have realized good performances in term of 

debit and cost. In fact, after optimization we have obtained an improvement out of  
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Figure 2.44 Matlab-Simulink Model of the Arneodo Attractor, Ihsan Pehlivan and M. 

Ali Yalcinve Selçuk Coskun [14]. 

 

 

 

Figure 2.45 Phase portraits ((a) x-y, (b) x-z , (c) y-z ) of the Arneodo Attractor when 

1 2 3 4 b = - 5.5, b = 3.5, b = 1 and b = -1 , x0 = 0.5, y0 = - 1 z0 = 0.5 presented by 

Ihsan Pehlivan and M. Ali Yalcinve Selçuk Coskun [14]. 

 

100% of debits. In addition, our method is optimal and can be used for the 

implementation of all the others Rössler like chaotic systems such as Lorenz, Chua, 

Lü, Che etc. Therefore, this work will permit to use in choice the different continuous 

chaotic systems in a possible secure digital chaotic communication system.  
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Figure 2.46 Designed Circuit Schematic of the Arneodo Attractor presented by Ihsan 

Pehlivan and M. Ali Yalcinve Selçuk Coskun [14]. 

 

 

 

Figure 2.47 PSpice simulation results of the Arneodo Attractor, (a) x, y phase portrait 

(b) x, z, (c) y, z phase portraits presented by Ihsan Pehlivan and M. Ali Yalcinve 

Selçuk Coskun [14]. 
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  2.2.2.5Design and simulations of the Aroneodo attractor’s chaotic 

oscillator and signal masking circuit 

  Ihsan Pehlivan, Yılmaz Uyarogluand M. Ali Yalcinve Selçuk 

Coskun[14], In this paper, synchronizing two coupled ratchet Josephson junctions 

subjected to a quasiperiodic field is achieved. In the limit of weak perturbation of 

irrational frequencies equal to the square root of the transcendental number π and for 

small damping parameters, phase locking occurs as the coupling between both 

junctions is increased. It turns out that the transition from non-synchronous to 

synchronous chaotic state does not involve attractors appearing and disappearing. The 

undertaken symmetry analysis of the system demonstrates the suppression of the 

massive phase fluctuations as the coupling rises, allowing chaos synchronization 

between both junctions to take place. The calculations also reveal the persistence of 

the synchronous state for high coupling strengths, taking into consideration the 

symmetry particularity of the external drive and potential 

  Following nonlinear autonomous ordinary differential equations are 

the Arneodo chaotic system. 
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The Lyapunov exponents of the Arneodo Attractor are 0.232, 0, and -1.232. Namely, 

only one positive LE is present. The Figure 2.44 and Figure 2.45 Show the Simulink 

modeling and the simulation results of the Arneodo Attractor respectively. Figure 

2.46 shows the circuit schematic for implementing the Arneodo Attractor. We use 

TL081 op-amps, the Analog Devices AD633JN multipliers, appropriate valued 

resistors and capacitors for Spice simulations. The circuit is supplied ±15 V power 

supplies. Acceptable inputs to theAD633 multiplier IC are –10 to +10 V. The resistors 

R1-R12 are all shown with nominal values in Figure 3 – Figure4 also shows Spice 

simulation results of this circuit. Electronic circuit Spice simulations of this circuit are 

implemented for b = - 5.5, b = 3.5, b = 1, b = -1parameters and initial conditions x0 = 

0.5, y0 = - 1, z0 = 0.5. Matlab-Simulink and Spice simulation results of Arneodo \ 
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Figure 2.48 Principle scheme of a general secure communication system with 

masking technique presented by Ihsan Pehlivan and M. Ali Yalcinve Selçuk 

Coskun [14]. 

 

Attractor. Figure 2.47 give the same conclusions. Due to the fact that output signal 

can recover input signal, it indicates that it is possible to implement secure 

communication for a chaotic system. Figure 2.48 shows the principle scheme of a 

general secure communication system that employs the masking technique. Figure 

2.48 shows Matlab Simulink modeling of chaotic masking communication circuit of 

the Arneodo Attractor. 

  The presence of the chaotic signal between the transmitter and receiver 

has proposed the use of chaos in secure communication systems. The design of these 

systems depends on the self-synchronization property of the Arneodo Attractor. 

Transmitter and receiver systems are identical except for their initial values, in which 

the transmitter system are 0.5, -1, 0.5 and the receiver system are 0.5, 1, and 0.5 as 

shown in Figure 2.49. It is necessary to make sure the parameters of transmitter and 

receiver are identical for implementing the chaotic masking communication. In this 

masking scheme, a low-level message signal is added to the synchronizing driving 

chaotic signal in order to regenerate a clean driving signal at the receiver. Thus, the 

message has been perfectly recovered by using the signal masking approach through 

cascading synchronization in the Arneodo Attractor. Computer simulation results 

have shown that the performance of Arneodo Attractor in chaotic masking and 

message recovery.  
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Figure 2.49 Simulink modeling of chaotic masking communication circuit of the 

Arneodo Attractor presented by Ihsan Pehlivan and M. Ali Yalcinve Selçuk 

Coskun [14]. 

 

 

 

Figure 2.50 Simulink outputs of Masking Communication Scheme of Arneodo 

Attractor (a) Drive (y) and response (yr) system chaotic signals vs. Time, (b) 

Transmitted signal S(t) = y(t) + i(t), c) Information i(t) and retrieved ir(t) 

signals(sinus signal) has 0.2V amplitude and frequency 10 KHz presented by 

Ihsan Pehlivan and M. Ali Yalcinve Selçuk Coskun [14]. 

 

One disadvantage of using one-way coupling method is that compared to this 

cascading method, it takes longer to synchronize the coupled systems, especially 

when the coupling parameter is small. This may cause problems in practical  
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Figure 2.51 Arneodo Attractor Chaotic Masking Communication Circuit presented by 

Ihsan Pehlivan and M. Ali Yalcinve Selçuk Coskun [14]. 

 

 

 

Figure 2.52Spice outputs of Arneodo Attractor Masking Communication Circuit (a) 

Drive system y signal and response system yr signal vs. time (b) Information and 

retrieved signal (0.2 V, 10 KHz)presented by Ihsan Pehlivan and M. Ali Yalcinve 

Selçuk Coskun[14]. 
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applications such as secure communications since information may be delayed or lost 

during the first period of matching time. 

Transmitter and receiver circuits are identical except for their initial values, in 

which the transmitter circuit are 0.5, -1, 0.01 and the receiver circuit are 0.5, 0, 0.5 as 

shown in The transmitted signal is a sinus wave of amplitude 0.2volts and of 10 KHz 

frequency. The sinus wave signal is added to the generated chaotic x signal, and the 

S(t)= y +i(t) is feed into the receiver. The chaotic y signal is regenerated allowing a 

single subtraction to retrieve the transmitted signal, [y+i(t)]-y r = i(t), If y = yr. This 

is a result of synchronization as in Figure 2.50.(a). Figure 2.50 (c) shows the 

information signal-sinus wave and the retrieved signal output of scope. Figure 2.51 

shows the circuit schematic for implementing the Arneodo Attractor’s Chaotic 

Masking Communication. Figure 2.51 shows Spice simulation results of this Chaotic 

Masking Circuit. The transmitted signal is as minus wave of amplitude 0.2V and 

frequency 10 KHz. Figure 2.51. Simulink and Spice simulations Figure 2.49, 2.50 of 

chaotic masking circuit give the same conclusions. 

This paper focuses on the Arneodo Attractor’s chaotic oscillator circuits and 

their applications in signal masking communications. Arneodo Attractor’s chaotic 

oscillator circuits were designed and simulated. Chaotic signal masking circuits were 

realized using Matlab-Simulink and Spice program. Related figures in Figure 2.50 - 

2.52 point out that Matlab-Simulink and Spice outputs prove the same conclusions. 

We have demonstrated in simulations that chaos can be synchronized and applied to 

secure communications. We suggest that this phenomenon of chaos synchronism may 

serve as the basis for little known Arneodo Attractor to achieve secure 

communication. Simulation results are used to visualize and illustrate the 

effectiveness of Arneodo chaotic system in signal masking. All simulations results 

performed on Arneodo chaotic system are verified the applicable of secure 

communication. 

 

  2.2.2.6 Phase synchronization in mutually coupled chaotic Josephson 

junctions: effect of symmetry and incommensurate frequencies 
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 Sameer Al-Khawaja(2010), The nonlinear chaotic autonomous 

Arneodo system is algebraically simple but can generate complex chaotic attractors. 

In this  

 

 

Figure 2.53 (a) The phase difference dynamics of the decoupled ratchets (ε = 0), α1 

=α2 = 0:01, a1 = a2 = 0:08092, a3 = a4 = 0:08092, n = ω1/ω2 =√π, m = ω3/ω4 =√π. 

(b) The phase difference dynamics for ε = 0:32, the phase is bounded andsettled 

at a negative direction before the fulfillment of synchronization. (c) Complete 

phase synchronization at ε = 0:66 after nearly 40 s transient time and for the same 

parameters as in (a) and (b) presented by Sameer Al-Khawaja [15], 

 

paper, Arneodo Attractor’s chaotic oscillator circuits were designed and simulated. 

Also Arneodo Attractor is addressed suitable for chaotic masking communication 

circuits using Matlab/Simulink and Orcad-PSpice programs. We have demonstrated in 

simulations that chaos can be synchronized and applied to signal masking 

communications. We suggest that this phenomenon of chaos synchronism may serve 

as the basis for little known Arneodo attractor to achieve signal masking 

communication applications. Simulation results are used to visualize and illustrate the 
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effectiveness of Arneodo chaotic system in signal masking. All simulations results 

performed on Arneodo chaotic system are verified the applicable of secure 

communication. The phase θ of an under damped Josephson junction can be described 

by the following nonlinear differential equation 
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Where ωp, ωc are the plasma and characteristic frequency respectively, and linked to 

the junction parameters, such as the critical current, shunt resistance and capacitance. 

The third term on the left in Equation (2.41) represents the derivative of the potential 

U(θ) ascribed to the Josephson tunneling fluxions, which is considered asymmetric of 

the ratchet type. F(t) is the external time-dependent excitation that is normally taken 

in the form of current. After having performed a proper normalization Equation (2.41) 

could be assimilated, in the absence of any noise components, to the inertial equation 

of a particle moving in one dimension under the influence of a quasiperiodic external 

driving in a ratchet potential, such that 
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Since we can set ω1/ω2 = n, for which n can be rational or irrational depending on 

ω1;2values, we can reformulate Eq. (2) as a three-dimensional system in (x; y; z),so 

that it yields 
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Synchronization between two coupled ratchets Josephson junction’s under the 

influence of a quasi-periodically varying field have been examined. The system has 

been modeled using the coupled rotators equations in the weak perturbation and low 
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damping limit, for which irrational relation between the frequencies has been 

considered. For zero coupling, the dynamics were highly uncorrelated with initially 

non-identical and non-diffused attractors, becoming identical but diffused as the 

coupling ε reached 0.66. The latter transition from non-synchronized to synchronous 

chaotic state is not associated with attractors appearing and abolishing as our results 

show. The synchronization state also permanently and markedly retains for higher 

than0.66 coupling strength. The analysis of the symmetry properties related to the 

external excitation and ratchet potential of tunneling flux quanta has further 

demonstrated that the symmetry of the system is broken. The corresponding enormous 

phase fluctuations prevailing for the case of decoupled junctions can be quenched as 

the coupling is gradually raised in the system, allowing phase–phase locking to take 

effect and synchronization is thereby achieved. We put emphasis on exploring chaos 

synchronization in solution Josephson junctions, for which spatial contributions may 

be influential on the transport characteristics. Controlling chaos in such systems is of 

mounting interest especially for the implementation of directed transport in inertial 

solution 



 

 

Chapter 3 

Research Methodology 

 

This thesis is based on the chaotic theory and dynamical system and 

applications on secure communication. The research methodology includes the study 

of theories, observation, comparison, analysis and experimentation. The research for 

secure communication based on the jerk function can be performed through the 

equation model by Jerk chaotic application. The simulation approach concerns with 

generalization and the formulation of chaos theory until the circuit implementation. 

 

3.1 Overall Research Process mainly study in 5 directions consist as 

follows 

 3.1.1 Study Chaos theory and dynamical systems. 

 3.1.2 Study the chaotic circuits and synchronizations in secure communication 

systems 

3.1.3 Design low cost-effective chaotic circuit 

3.1.4 Simulation and create of chaos attractor and chaos circuit  

3.1.5 Design and implement the chaos-masking secure communication system 

 

3.2 Utilizing Data  

 To generalize the form of the chaotic oscillator, the simulated data in the 

parametric excitation include; 

3.2.1 Is: reverse saturation currents of diode 

3.2.2 VD: voltage drop across the diode 

3.2.3 n: non-ideality factor of diode 

3.2.4 VT: thermal voltage at room temperature 

3.2.5 Ra: R adjust value variable a 

3.2.6 Rb: R adjust value variable b  

3.2.7 x, y, z : variable x, y, z 

3.2.8 a, b: variable a, b, c 
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3.3 Research Tools 

 In the thesis, the entire of simulation results were perform through MATLAB® 

version R2008a. 

 

3.4 Data Analysis Methods 

 3.5.1 Numerical analysis of chaotic theory such as Eigen-value and Jacobian 

matrix which specify the characteristic of the chaotic behavior in phase space 

diagram.  

 3.5.2 The mathematic simulation function were analyzed though MATLAB 

version R2008 program as an indicating tools for detect the chaotic behavior such as 

positive Lyapunov ( LE+) indicate the systems is in chaotic state where DKY>2 and 

complex in bifurcation diagram can be also obtain in chaotic state. 

 

3.5 Research Procedures 

 3.6.1 Analyze the chaotic model through the dynamic system by using time-

scaling method, Eigen value, Eigen-Vector, Jacobian-Matrix and Stability analysis.  

 3.6.2 Use the numerical result from 3.6.1 to analyzed by chaotic indicators 

such as attractor, time-domain, Poincare’ section, Bifurcation, Lyapunov diagram and 

Kaplan-York dimension.  

 3.6.3 Optimize the system parameters in 3.2. And the research will also 

enhance the model of chaotic Jerk function by generalize the form of the jerk 

oscillator equation. 

 3.6.4 Implement the 3.3 circuit and demonstrate the chaotic circuit application 

in the constructed Circuit. 

 

3.6 Conclusions 

 Secure communication based on chaotic oscillator using parameters 

optimization and measurement can be performed in this thesis as chaotic-masking 

method to enhance the accuracy of the system and also implementation of circuit. The 

method proposed in this thesis has been utilized advance knowledge of chaotic theory 
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and dynamic systems such as mathematical analysis corresponding its simulations 

complicate data analysis and also the extremely small jerk oscillator circuits. 

 



Chapter 4 

Experiment and Result 

 

 This chapter deals with three chaotic systems for application to secure 

communications. Dynamical properties are described base including equilibrium, 

eigenvalues, Poincare, frequency spectrum, bifurcation, chaotic attractor and chaotic 

synchronization. This chapter focuses on design of chaotic oscillator and signal 

masking circuit using Matlab-Simulink for simulation and implement chaotic circuit 

for secure communication. 

 

4.1 Rössler Attractor using Diode Equation 

In 1963, Edward Lorenz [21] encountered sensitively dependent initial 

conditions of an atmospheric convection model while performing numerical 

simulations leading to the discovery of the Lorenz system with seven-terms in three-

dimensional ordinary differential equations and two quadratic nonlinearities. In 1976, 

Rössler [24] proposed a chaotic system with seven terms and a single quadratic 

nonlinearity, which is algebraically simpler than Lorenz system. In addition, a single 

folded-band attractor of Rössler system is topologically simpler than a two-scroll 

Lorenz attractor. Such Lorenz and Rössler systems have consequently led to 

considerable research interests in searching for new chaotic systems with fewer terms 

in ODEs [5-10] or more complex attractor topology.  

Several chaotic systems with fewer than seven terms and two quadratic 

nonlinearities continuously been reported as variants in Lorenz system family. 

Complex three-scroll and four-scroll attractors based on Lorenz system have also 

been suggested through the use of three or more quadratic nonlinearities. On the other 

hand, simple chaotic systems with a single nonlinearity similar to Rössler system are 

rarely found. In fact, Rössler himself had proposed another system with six terms and 

a single quadratic nonlinearity in 1979 [30-35]. In 1994, Sprott [15-19] found fourteen 

cases with six terms and a single quadratic nonlinearity through an intensive 

numerical computer search.  Recently, many simple systems have been proposed in 

simple Jerk equations with single quadratic or non-quadratic nonlinearities. Despite 
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the fact that these simple Jerk chaotic systems with a single nonlinearity potentially 

resemble the single folded-band Rössler attractor , the Kapelan-York dimension (DKY) 

as a measure of complexity is somewhat lower than the original Rössler attractor that 

possesses the greatest value of DKY =2.1587. This leads to a question of whether the 

original Rössler system in dynamic forms can be simplified into fewer terms with 

simple nonlinearity, or modified for more complex attractor. No simplifications of 

Rössler system has never been found so far. 

 

 4.1.1 Dynamical Properties  

Based on the Rössler system proposed in 1979, the first and the second 

equations, i.e. zyx   and ayxy  , initiate a normal band of the attractor 

through an outward spiral motion into the x-y phase plane. Nonlinear interactions 

between x and z variables in the third equation, i.e. )( cxzbz  , form an 

additional folded band to the overall attractor. It is noticeable that the folded band in 

Rössler attractor rises and returns exponentially in z-dimension especially for positive 

values of x variable under the flows. This aspect implies that the third equation may 

be modified through the use of an exponential nonlinearity. Therefore, a new chaotic 

system is therefore presented in three-dimensional autonomous ODEs expressed in a 

general form as  

 

( )

x y z

y x ay

z z bF x

  

 

  







     (4.1) 

 

where 3),,( zyx are dynamical variables, 
),( ba are system parameters, and 

F(x) is a nonlinear function required for chaos. Two particularly simple cases of the 

nonlinear function F(x) are presented using exponential functions. In other words, 

 

1( ) xF x e       (4.2) 
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 4.1.2 Numerical analysis 

The existence of attractor can be described by the divergence of flows 

as	∇ ∙ V = ∂ẋ ∂x⁄ + ∂ẏ ∂x⁄ + ∂ż ∂x⁄ . For a dissipative chaotic system, p<0 and 

therefore a is limited into the region 0 < a< 1. The exponential rate of contraction is 

dV/dt =e(a-1) and hence a volume elementV0 is contracted in time t by the flows into a 

volume element V0e
−t. Each volume containing the system trajectories shrinks to zero 

as time t approaches +∞. All system orbits will be confined to a specific limit set of 

zero volume, and the asymptotic motion converges onto an attractor. It can be 

concluded that the existence of attractors is constant and independent to the nonlinear 

term bF(x). 

 

  4.1.2.1 Bifurcations, Lyapunov Exponents, and Kaplan-Yorke 

Dimension 

  Numerical simulations have been performed in MATLAB using the 

initial condition of (x0, y0, z0) = (1, 0, 1). In fact, the initial condition is not crucial, 

and can be selected from any point that lies in the basin of attractor. In order to find 

the control parameter a that offers the maximum values of chaoticity and complexity, 

Figure 4.1 shows the bifurcation diagram of the peak of z (z max) versus the 

parameter b. It is seen in Figure 4.1 that the system exhibits a period-doubling route to 

chaos. In addition, Figure 4.2 shows the plots of the positive LE versus the parameter 

b. The chaoticity is a measure of the greatest LE, which is the average rate of growth  

of the distance between two nearby initial conditions that grows exponentially in time 

when averaged along the trajectory, leading to long-term unpredictability property. 

The Lyapunov exponents can be employed for the estimation of the rate of entropy 

production and the fractal dimension commonly known as Kaplan-Yorke dimension 

DKY, i.e. 

 

3

21

11

1

LE

LELE
kLE

LE
jD

j

i
i

j

KY


 



  (4.3) 
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Figure 4.1 Bifurcation diagram fixed b=0.0007. 

 

Where k is a non-integer constant, and typically equals to 2 for three-dimensional 

chaotic systems. 

 

  4.1.2.2 Numerical Equilibria and Eigenvalue 

The Jacobian of the system is 

 

xbez

ayx

zy







0

0

0

     (4.4) 

 

where x, y and z are the state variables and a, bare positive real constants. The system 

displays a typical chaotic attractor when a = 0.2 and b=0.00045. The new system has 

equilibrium points (0, 0, 0) 
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Figure 4.2 Chaotic scheme Rössler attractor using Matlab Simulink. 

 

/

0 1 1

1 0

0 1

J a

bF

  
   
  

     (4.5) 

 

Applying the equilibrium point P into this Jacobian matrix and analyzing |Iλ − J| = 0 

reveal a resulting characteristic polynomial as follows: 

 

3 2 / /(1 ) ( 1) ( 1) 0a bF a abF            (4.6) 

 

According to the Routh–Hurwitz stability criterion, the system (1) is unstable when F/ 

< (1 + (1-a)2)/(b-2ab). Note that dynamic behaviors depend on two parameters aandb, 

and can be characterized completely by the plot of parameter space without 

redundancy. For all particular values of a and b in the subsequent numerical analyses, 

the resulting eigenvalue λ1 is a positive real number and λ2 and λ3 are a pair of  
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Figure 4.3 Simulation Phase portraits with 1( ) xF x e  at a =0.30 and b=0.0007, LEs = 

(0.0638, 0, -0.8641), DKY =2.0738. 

 

complex conjugate with positive real parts, indicating that the equilibrium points are 

all saddle focus points 

 

 4.1.3 Secure Communication Systems based Rössler 

 There are number of possible methods that have been developed for 

synchronization in chaotic communications. In the masking method, synchronization 

is achieved by simply if the conditional Lyapunov exponents for the systems are 

negative for the given operating parameters Thus, one could simply recover the 

message signal from the received chaotic signal through by means of a subtraction at 

the receiver. This synchronization is robust against small perturbations of the carrier 

signal. In the chaotic modulation method the message signal becomes part of the 

dynamics, which is more robust because of the greater symmetry between chaotic 

oscillator and response. In the chaos masking technique the message information is 
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encoded onto the attractor by means of modulating a parameter of the chaotic 

oscillator, typically in a binary manner. In all these three schemes synchronization is 

an obvious way of recovering the original information. Fig.4.1 shows the principle 

scheme of a general secure communication system with masking technique the 

transmitter can be used as a single drive system for a dual-channel transmitter 

independent of its response subsystem at the receiver. 

 

  4.1.3.1 Transmitter 

  At the transmitter, A Modified Rössler attractor described in equation 

4.1 can be used as a single drive system for a dual-channel transmitter independentof 

its response subsystem at the receiver as follows: A Modified Rössler System using 

Diode Equation and its Application toSecure Communications zyx  , y2.0xy   

and z0.0045ez x  . As show in Figure 4.1, the dual channel transmitter consists of 

two parallel. Transmitter signal. The first transmitter signal is (t)i(t)x(t)s 1t1 

,where (t)x t  is a chaotic signal and (t)i1
 represent the first original input which is 

transmit. The second transmitter signal is a (t)i(t)z(t)s 2t2  , where (t)Zt
is a chaotic 

masking signal and (t)i2
 represent the second original message which is transmitter. 

 

 4.1.3.2 Receiver 

  At the receiver, A Modified Rössler attractor described in (a) can be 

used as single response subsystem for dual-channel receiver as follow: rrr zyx  ,

r1r y2.0)(sy  t  and  r
)(s

r z0.0045ez 1  t As show in fig. 4.1, the dual channel 

consist of two parallel received signals (t)s1 and (t)s 2
, each of which regenerates a 

clean masking signal (t)z r and (t)x r , respectively  

 

 4.1.4 Simulation and Experimental Results 

This section, present simulation bifurcation diagram simulation chaotic 

attractor, application for secure communication using MATLAB-SIMULINK, 

implements real chaotic circuit and implement real circuit for application secure 

communication. 
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  4.1.4.1 Simulation Results 

   4.1.4.1.1 Dynamical properties 

   It can also be considered from Figure 4.2 that the value of a.is 

relatively small when b is fixed at 0.2. Shows the bifurcation diagram of the local 

maxima of x versus the parameter a. The corresponding attractors in the x-y phase 

plane over a range of a are displayed in Figure. 4.3 where chaotic regions apparently 

arise after a period-doubling cascade. With reference to Figures4.3 and 4.4, the 

normal folded-band attractor appears when 0.36<a<0.48 and the screw-type attractor 

with the third band appears when 0.47<a<0.55. For a = 0.52, the attractor yields the 

largest Lyapunov exponent L= (0.1868, 0,-0.3719) and consequently the complexity 

DKY= where DKY = 2 + (L1+L2)/L3 and L=(L1, L2, L3) is a set of Lyapunov exponents. 

For the particular cases of parameters considered above, summarizes the Equilibria, 

eigenvalues and types of equilibrium points of the system (4.1) with.F�(x) = e�. It 

can be that one equilibrium point is located very closely to the origin and involved in 

the flows while another is in some distance from the origin excluded from the flows. 

In addition, the two equilibrium points are all saddle focus nodes since the eigenvalue 

λ1 is a positive real number and λ2 and λ3are a pair of complex conjugate with positive 

real parts. In conclusion, the system (4.1) with 
1( ) xF x e not only contributes an 

addition to simple chaotic system with six terms in ODEs and a single simple 

exponential nonlinearity, but also offers a high complexity in terms of DKY. 

 

   4.1.4.1.2 Application for chaotic communication 

   Due to the fact that output signal can recover input signal, it 

indicates that it is possible to implement secure communication for a chaotic system. 

Fig. 4.1 shows the principle scheme of a general secure communication system that 

employs the masking technique. Figure 4.4 shows Simulink modeling of chaotic 

masking communication circuit of the Rössler Attractor. The presence of the chaotic 

signal between the transmitter and receiver has proposed the use of chaos in secure 

communication systems. The design of these systems depends on the self-

synchronization property of the Rössler Attractor. Transmitter and receiver systems 

are identical except for their initial values, in which the transmitter system is 1, 0, 1 
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Figure 4.4 Simulation Time domain of x, y and z. 



77 

 

Figure 4.5 Matlab-Simulink models of chaotic communications.  

 

and the receiver systems are 3, 0, and 3 as shown in Figure 4.5. It is necessary to 

make sure the parameters of transmitter and receiver are identical for implementing 

the chaotic masking communication. In this masking scheme, message signal is added 

to the synchronizing driving chaotic signal in order to regenerate a clean driving 

signal at the receiver. Thus, the message has been perfectly recovered by using the 

signal masking approach through cascading synchronization in the make sure the 

parameters of transmitter and receivers are identical for implementing the chaotic 

masking communication. In this masking scheme, a message signal is added to the 

synchronizing driving chaotic signal in order to regenerate a clean driving signal at 

the receiver. Thus, the message has been perfectly recovered by using the signal 

masking approach through cascading synchronization in the Rössler Attractor. 

Computer simulation results have shown that the performance of Rössler Attractor in 

chaotic masking and message recovery. One disadvantage of using one-way coupling 

method is that compared to this cascading method, it takes longer to synchronize the 

coupled systems, especially when the coupling parameter is small. This may cause 

problems in practical applications such as secure communications since information 

may be delayed or lost during the first period of matching time Rössler Attractor.  
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Figure 4.6 (a) Synchronization results input and recovered output signal at the 

receiver digital (b) Synchronization results input and recovered output signal at 

the receiver analog. 

 

Computer simulation results have shown that the performance of Rössler Attractor in 

chaotic masking and message recovery. One disadvantage of using one-way coupling 

method is that compared to this cascading method, it takes longer to synchronize the 

coupled systems, especially when the coupling parameter is small. This may cause 

problems in practical applications such as secure communications since information 

may be delayed or lost during the first period of matching time. 
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Figure 4.7 (a) Synchronize error of digital signal and (b) Synchronize error of analog 

signal. 

 

 Form equation 4.1, we implement schematic using by Matlab-Simulink show 

as Figure. 4.3 when a = 0.35 and b=0.0007 and s equilibrium points (0, 0, 0). As show 

Figure 4.4, chaotic attractor result simulation plot xyz, xy, yz and zx using by Matlab-

Simulink. 

  4.1.4.2 Experimental Results 

   4.1.4.2.1 Dynamical properties 

   Fig.4.9 shows the circuit schematic for implementing real 

electronics circuit form eq. 4.1. We use TL081 op-amps, diode 2N4148, R =10kΩ, C= 
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1nF and R adjust k1 = 44 kΩ and k2 =0.7 kΩ. The circuit is supplied ± 9V. As show 

Figure 4.8, result experimental chaotic attractor from oscilloscope. 

 

 

 

Figure 4.8 Chaotic circuits (a) design chaotic circuit and (b) real chaotic circuit 

 

 

 

Figure 4.9 Result chaotic attractor of real electronics circuit. 
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Figure 4.10 Compared between simulation and experiment when b = 0.0007 and Rb 

 = 0.7 kΩ. 
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   4.1.4.2.2 Chaotic communication 

 

 

Figure 4.11 Circuit Chaotic Synchronize. 

 

 

 

Figure 4.12 Real circuits chaotic synchronize. 
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Figure 4.13 Result chaotic synchronize (a) analog signal and (b) digital signal. 

 

   This section, we implement real Electronic circuit chaotic 

direct synchronize for two channel input is digital signal and analog signal input as 

show in Figures. 4.13 - 4.14 as show, real circuit chaotic synchronize when op-amp 

TL084 and TL082 R = 1KΩ, C = 1nF, Ra = 25.45 kΩ and Rb = 0.7 kΩ. Diode 

2N4148 and fig 4.15 shows as result chaotic synchronization  

 

4.2 Chaotic Jerk Oscillator 

 This section presents a very simple autonomous RC chaotic jerk oscillator 

with nine electronic components. The nonlinearity required for chaos is implemented 

through the use of a well-known diode equation. Basic dynamical properties [35-44] 

are described including equilibrium, eigenvalue of Jacobian matrix, chaotic attractors, 

time-domain waveforms, power spectrum, and bifurcations. Potential application of 
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such a simple autonomous RC chaotic jerk oscillator is presented in message-masking 

for secure Communications. 

 The results show that the chaotically masked message is fully synchronized at 

the receiver through the use of very simple circuit. Consequently, the proposed new 

paradigm on secure communication schemes offers not only a simple mathematical 

system, but also very cost-effective circuit and system implementations. 

 The term ‘jerk’ comes from the fact that successive time derivatives of 

displacement are velocity, acceleration, and jerk. Most chaotic jerk oscillators have 

employed nonlinearity only in the x term of the jerk function. The simplest dissipative 

chaotic flow has, however, employed a quadratic nonlinearity in the ẋ term of the jerk 

function. Recently, have shown minimal jerk flow of (4.1) with nonlinearity in the x  

term of the form  

 

xexxx       (4.7) 

 

 In which chaos occurs for α = 0.27. Such a nonlinear function is of particular 

interest as it resembles diode characteristics. Sprott [6] has subsequently implemented 

(1) in the form 

 

























 110 026.09

x

exxx



    (4.8) 

 

 The oscillator (4.7), however, requires large counts of 14 electronic 

components including 4 op-amps. Although the oscillator has been implemented by a 

minimal chaotic jerk equation of (4.7), the required number of electronic components 

does not seem to be minimal. It is natural to wonder in the opposite direction whether 

or not a slightly more complicated chaotic jerk equation may greatly reduce the large 

counts of electronic components for the chaotic oscillator. 

 This section presents a very simple autonomous RC chaotic jerk oscillator 

with nine electronic components. The nonlinearity required for chaos is implemented 
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through the use of a well-known diode equation. Basic dynamical properties are 

described including equilibrium, eigenvalue of Jacobian matrix, chaotic attractors, 

time-domain waveforms, power spectrum, and bifurcations. Potential application of 

such a simple autonomous RC chaotic jerk oscillator is presented in message-masking 

for secure Communications 

The results show that the chaotically masked message is fully synchronized at 

the receiver through the use of very simple circuit. Consequently, the proposed new 

paradigm on secure communication schemes offers not only a simple mathematical 

system, but also very cost-effective circuit and system implementations. 

 

 4.2.1 Circuit Realizations 

 In an attempt to reduce the number of electronic components, the minimal 

form (4.7) may be modified with a slightly more complicated jerk function and a 

simple diode equation expressed as 

 

















 1exp

T

D
SD

nV

V
II    (4.9) 

 

In the following form 

 

RIxxxJx D ),,(     (4.10) 

 

where the voltage drop across the diode is )2( xxVD   , ISis the reverse saturation 

current of diode, VT is the thermal voltage at room temperature, n is the non-ideality 

factor of diode, R is a parameter and ),,( xxxJ   is a jerk function. Figure 4.11 illustrates 

an electronic circuit realization of the autonomous RC chaotic jerk oscillator, 

consisting of an amplifier, three resistors, three capacitors and a single diode. These 

components implement an integrator and a second-order RC passive filter in a 

feedback loop with a smaller nonlinear feedback loop containing a diode. Applying 

nodal analysis, 
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Figure 4.14 RC-Base chaotic oscillator 
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Equation (4.11) can be expressed in terms of a normalized dynamical representation 

through the use of dimensionless variables and parameters as follows: 
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where the time constants τ0=C2R=C3R, τ1=C1R and τ=t/τ0. It is seen from (4.7) that

)2( XXX    and consequently the diode equation ID can be expressed as 

ID=IS{exp[VC2/(nVT)]-1} = IS{exp[Y]-1}, resulting in 

 

SDS IiXXI  }1]2{exp[      (4.14) 

 

Where ISexp(Y) = ISexp ( XX 2 ). Alternatively, the dynamical representation in 

(4.14) can also be written in a jerk representation as 

 

DDD CIAXBiXBiXx  )23()4(     (4.15) 

 

 It is obvious that a jerk model in (4.14) is described in the form shown in 

(4.15) as RIxxxJx D ),,(  . In addition, the proposed circuit shown in Fig.4.11 has 

been designed with components R = 1 k, C1 = 0.1 F, C2 = C3 = 10 F, RO is a 

potentiometer. The Diode model is 1N4148 where IS=14.11x10-9, n=1.984, and 

VT=25.85x10-3. The counting number of electronic components is only 8 and is 

therefore reduced by 43 % compared to that of 14 counts in.  In particular, only a 

single op-amp is necessary for circuit implementation. 

 

 4.2.2 Dynamical Property Analysis and Numerical Simulations 

 Dynamic properties were mathematically analyzed using nonlinear theorems 

and numerically investigated using MATLAB. The initial condition was set at (0.1, 0, 

0), which lies in the basic of attractor. The chaotic behaviors were simulated using the 

Fourth-order Runge-Kutta method with time step size of 5x10-6. The system is 

invariance under the transform (x, y, z) to (-x, -y, z), i.e. is symmetric around the z-

axis and remains confined to the positive half-space with respect to the z state 

variable. The divergence of flow of the dynamic system is described as  
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Therefore, the chaotic system is a dissipative system with an exponential rate of 

contraction as 

 

)104exp( )
4

exp( 3
Odt

dV


  (4.17) 

 

 In other words, a volume element V0 becomes smaller by the flow in time t 

into a volume element V0exp (−t). Each volume containing the trajectories shrinks to 

zero as t→∞ at an exponential rate of −4x103. System orbits are ultimately confined 

into a specific limit set of zero volume, and the system asymptotic motion settles onto 

an attractor of the system. In order to investigate the linear stability, the system (4.5) 

was linearized, and a single fixed point was found at (0, 0, 0). The Jacobian matrix of 

partial derivatives is defined as 
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where the parameters βC1 ={ISexp(VC2/nVT)}/nVTC1 and βC2 

={ISexp(VC2/nVT)}/nVTC2. The resulting eigenvalue of the Jacobian matrix in (4.18) 

evaluated at the fixed point are consequently equal to 1531.61  , 

i8852.30765.12   and i8852.30765.13  It is evident from (4.19) that the 

fixed point is a saddle focus node as the eigenvalue λ1 is negative real value and λ2,3 

are a pair of complex conjugate eigenvalue with positive real parts 

 

 4.2.3 Secure Communication Systems based on chaotic masking 

There are number of possible methods that have been developed for 

synchronization in chaotic communications. In the masking method, synchronization 

is achieved by simply if the conditional Lyapunov exponents for the systems are 

negative for the given operating parameters. Thus, one could simply recover the 

message signal from the received chaotic signal through by means of a subtraction at  
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Figure 4.15 Block diagram secure communication 

 

the receiver. This synchronization is robust against small perturbations of the carrier 

signal. In the chaotic modulation method the message signal becomes part of the 

dynamics, which is more robust because of the greater symmetry between chaotic 

oscillator and response. In the chaos shift keying [38-48] technique the message 

information is encoded onto the attractor by means of modulating a parameter of the 

chaotic oscillator, typically in a binary manner. In all these three schemes 

synchronization is an obvious way of recovering the original information. Figure 

4.17shows the principle scheme of a general secure communication system with 

masking technique the transmitter can be used as a single drive system for a dual-

channel transmitter independent of its response subsystem at the receiver. 

 

 4.2.4 Simulat ion and Experimental Results 

  4.1.4.1 Simulation Results 

  It is obvious that the proposed chaotic system circuit truly possesses 

chaotic behaviors with a single folded-band topology orbiting around the fixed point 

at (0, 0, 0). Figure 4.16 shows the bifurcation diagram of the peak of VC3(X) versus 

the parameter RO, exhibiting a route to chaos. It is seen that the bifurcating parameter 

RO can be tuned for chaos in wide region of 0.8 kΩ to 3 kΩ. Figure. 4.17 as show, 

schematic by using MATLAB-Simulation, when R0 = 0.0045 and initial condition 

(0.1, 0, 0) 



90 

 

 

Figure 4.16 Bifurcation diagram of the output VC3 (X) versus the bifurcating resistor 

 RO. 

 

 

 

Figure 4.17 schemetic chaotic using MATLAB-Simulation 
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Figure 4.18 Chaotic attractors in three-dimensional view, an x–y plane, an x–z plane, 

 and a y–z plane. 

 

 Upon setting RO to a value of 1.2 kΩ, the chaotic attractors are displayed in 

Fig. 3 for a three-dimensional view, an x–y phase plane, an x–z phase plane, and a y–

z phase plane. The attractor of three-dimensional view remains confined to the 

positive half-space of the z-axis. Figure 4.16 shows the consistent chaotic attractors in 

x-y plane obtained from experiment chaotic attractors in x–z plane. Figure 4.17 shows 

the synchronization results, (a) input and recovered output signal at the receiver, (b) 

synchronization errors. It is seen from Figure 4.18 that the masked signal can be 

retrieved shortly with low errors. In addition, other types of signals such as 

rectangular or common human speech can also be applied to this method autonomous 

RC chaotic jerk oscillator is presented in message-masking and synchronization for 

secure digital communications. The results show that the chaotically masked message 

is fully synchronized at the receiver through the use of very simple circuit. 

Consequently, the proposed new paradigm on secure communication schemes offers  
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Figure 4.19 Matlab–Simulink models secure communication base on chaotic. 

 

 

 

Figure 4.20 Synchronization results input and recovered output signal at the receiver 

 

not only a simple mathematical system, but also very cost-effective circuit and system 

implementationsFig.4.16 shows the synchronization results input and recovered 

output signal at the receiver, Figure 4.17 synchronization errors. It is seen from Figure 

4.18 that the masked signal can be retrieved shortly with low errors. In addition, other  
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Figure 4.23 Synchronization errors. 

 

  4.1.4.2 Experimental Results 

 

 

 

Figure 4.24 real circuit chaotic Jerk oscillators. 

 

 

 

Figure 4.25experiment chaotic attractors inx–z plane. 

 

types of signals such as rectangular or common human speech can also be applied to 

this method. Electronic circuit experiment was conducted on board using discrete 
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components. The components value were set at R = 470, C1 = 0.1 F, C2 = C3 = 10 

F, Diode is 1N4148 and an Op-amp is LM741, RO is 1.2 k.  

 

4.3 A Back-to-Back Twisted Chaotic Jerk Attractor using Inherent 

Hyperbolic Sine Function 

 Chaotic systems have recently been of great interests due to many possible 

potential applications in various fields of science and technology. Considerable 

research interests have been made in searching for new chaotic systems with minimal 

algebraic representations and simple circuit implementations. Chaos behavior can 

occur everywhere, even in very simple and low-dimensional nonlinear systems. The 

well-known Poincare’-Bendixon theorem [19-35], requires an autonomous continuous 

time state space model to be at least three-dimensional in order to have bounded 

chaotic solutions. On the other hand, for non-autonomous systems, chaos can appear 

in two-dimensional models. A measure of chaoticity has been based on the Kaplan-

Yorke dimension (DKY), whilst a measure of complexity (or strangeness) has been 

based on the maximum positive Lyapunov Exponent (LE). 

 There are many examples, such as Lorenz [19], and Rössler [20] systems that 

have been widely studied. Electronic circuits that consist of two nonlinear elements 

can be used to verify theoretical predictions. As an example, nonlinear Duffing forced 

oscillators have been experimentally studied [25]. Another popular example is the 

nonlinear Chua’s circuit, built and experimentally examined [45]. Up to now, various 

chaotic systems are introduced in [36] Chaos and chaotic systems have many fields of 

applications. One of the popular practical applications is secure communication. 

Synchronization of chaotic systems and chaos based secure communications has 

become an area of active research in recent years [30-40]. Different approaches are 

proposed and being pursued. 

 Chaotic signals depend very sensitively on initial conditions have 

unpredictable features and noise like wideband spread spectrum. So, it can be used in 

various communication applications because of their features of masking and 

immunizing information against noise. Chaos-based secure communication systems 

have been alternative of the standard spread-spectrum systems, since they are able to 
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spread the spectrum of the information signals and simultaneously encrypt the 

information signals with chaotic circuitry which is simple and inexpensive. Many 

researchers have investigated the implications of chaotic signals in communication 

systems. For example, Kocarev et. al., and Cuomo et al., [30], have used chaotic 

signals in communication security, and spread spectrum communication. 

 This section deals with the signal masking application of chaotic signals. Here 

a chaotic signal is generated with a new autonomous three dimensional chaotic system 

and this signal is used as a masking signal. Information signal is added to the chaotic 

signal at transmitter and at receiver the masking signal is regenerated and subtracted 

from the receiver signal. For synchronization of transmitter and receiver, Pecora – 

Carroll method of identical synchronization technique is used. In this method, 

receiver consists of two subsystems and with one state received from transmitter, 

receiver is able to generate the same masking signal as the signal generated at 

transmitter. 

 

 4.3.1 Dynamical Properties  

  4.3.1.1 Hyperbolic Sine Function in Anti-Parallel Diodes 

  With reference to the anti-parallel diodes in Fig.1, the currents ID1 and 

ID2, which respectively flow through the diodes D1 and D2, can typically be modeled 

as 
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where IS1 and IS2 are reverse bias saturation currents of the diodes D1 and D2, 

respectively. The voltages vD and VT are a voltage across the two diodes and the 

typical thermal voltage, respectively. The parameter n is a diode quality factor. 

Applying Kirchhoff’s current law, the total current IDT flowing back to the Integrator 

1 is can be expressed as 
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  In the case where similar diode models are employed, the reverse bias 

saturation currents may be equal, i.e. IS=IS1 = IS2, and the current IDT can be arranged 

as follows; 

)()( T

D

T

D

nV

v

nV

v

SDDT eeIvI




     (4.23) 

 

  Typically, the values of Is, VT and n are constant, determining by 

manufacturers, two new parameters k1 = 2IS and k2 =1/nVT are introduced in the 

analysis for the sake of simplicity. Therefore, Eq. (4.23) can alternatively be 

expressed as 
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  It can be considered from (4.24) that the voltage vD across the diodes is 

a voltage difference between vX and vY, i.e. vD =vX-vY. The voltage vX also equal to 

and, as will be seen later, vY is a virtual ground of the inverting terminal of the 

operational amplifier. Therefore, the voltage vD is equal to ẋ. As a result, the total 

current IDT flowing through two anti-parallel diodes obeys an inherent hyperbolic sine 

function with two scaling factors k1 and k2 as follows; 

 

)sinh()( 21 xkkxIDT         (4.25) 

 

  4.3.1.2 Chaotic Jerk System using Hyperbolic Sine Function 

  Based on the three successive integral functions in eq. (4.25), the 

proposed chaotic jerk function using hyperbolic sine function with two scaling factors 

k1 and k2 derived from two anti-parallel diodes is given by 

 

)sinh( 21 xkRkxxax        (4.26) 
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where a is chaos control parameter and the factor R, which is resistance value, is 

required to convert from a current signal to a voltage signal. It is apparent in (4.26) 

that all parameters in the nonlinear hyperbolic sine function are constant, obtaining 

from practical electronic circuit values, and chaos can be controlled through a single 

system parameter a. For dynamical property analysis, the dynamical form of (4.27) 

can be expressed as 
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Analyzing (8), the system possesses only single equilibrium point, i.e. 
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for the equilibrium point found in (4.28), the Jacobian matrix (J) of the linearized 

system is given by 
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where sinh(y) is a sin hyperbolic function of the variable y. Applying the equilibrium 

point P into this Jacobian matrix and analyzing |λI - J|=0 reveal a resulting 

characteristic polynomial as follows: 

 

011
23   Rka      (4.30) 

 

 4.3.2 Numerical analysis  

  4.3.2.1 Simulations for Maximum Chaoticity and Complexity  

  Numerical simulations have been performed in MATLAB using the 

initial condition of (x0, y0, z0) = (0.1, 0, -0.1). Such initial conditions are in fact not 
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essential, and can be selected from any point that lies in an attractor basin. In 

particular, the diode model 1N4148 was chosen in this work and the values of 

component parameters are as follows; IS = 5.84x10-9 A, n=1.94, and VT =26mV. The 

small resistor R of 10Ω was realized. Consequently, Eq. (7) can be expressed as 
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it is seen in (4.27) that the single parameter a is a chaos control parameter, and its 

value can somewhat be determined at the maximum chaoticity and complexity. The 

chaoticity is a measure of the greatest positive Lyapunov exponents, which is the 

average rate of growth of the distance between two nearby initial conditions that 

grows exponentially in time when averaged along the trajectory, leading to long-term 

unpredictability property. The Lyapunov exponents can be employed for the 

estimation of the rate of entropy production and the fractal dimension commonly 

known as Kaplan-Yorke dimension DKY, i.e. 
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where k is a non-integer constant, and typically equals to 2 for three-dimensional 

chaotic systems. 

 

  4.3.2.2 Numerical Equilibria and Eigenvalue 

The Jacobian of the system is 

 

y)sinh(kRkxazz

zy

yx

21











    (4.33) 

 

where x, y and z are the state variables and a, R, k1, k2 are positive real constants. The 

system displays a typical chaotic attractor when a = 0.7, R = 10Ω, k1=1.17 x 10-7and 

k2 =19.8. The new system has equilibrium points (0, 0, 0) 
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where sinh (k2y) is a sin hyperbolic function of the variable y. Applying the 

equilibrium point P into this Jacobian matrix and analyzing |λI - J|=0 reveal a 

resulting characteristic polynomial as follows: 

 

0110107.0 723       (4.35) 

 

the eigenvalue are λ1 = −0.745, λ2 = 0.162 + 1.147 i, λ3 = 0.162 − 1.147 i at the 

equilibrium point (0, 0, 0). As Eigen values has positive real parts which implies 

chaos. 

 

 4.3.3 Secure Communication Systems based on chaotic masking 

 There are number of possible methods that have been developed for 

synchronization in chaotic communications. In the masking method, synchronization 

is achieved by simply if the conditional Lyapunov exponents for the systems are 

negative for the given operating parameters Thus, one could simply recover the 

message signal from the received chaotic signal through by means of a subtraction at 

the receiver. This synchronization is robust against small perturbations of the carrier 

signal. In the chaotic modulation method the message signal becomes part of the 

dynamics, which is more robust because of the greater symmetry between chaotic 

oscillator and response. In the chaos masking technique the message information is 

encoded onto the attractor by means of modulating a parameter of the chaotic 

oscillator, typically in a binary manner. In all these three schemes synchronization is 

an obvious way of recovering the original information. Fig.4.11 shows the principle 

scheme of a general secure communication system with masking technique the 

transmitter can be used as a single drive system for a dual-channel transmitter 

independent of its response subsystem at the receiver. 
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  4.1.3.1 Transmitter 

 

 

Figure 4.24 Block diagram secure communication. 

 

  At the transmitter, A Modified Hyperbolic Sine Function attractor 

described in equation 4.1 can be used as a single drive system for a dual-channel 

transmitter independentof its response subsystem at the receiver as follows: A 

Modified hyperbolic sineSystem using Diode Equation and its Application toSecure 

Communications yx  , zy   and (y)x-azz sinh . As show in fig. 4.26, the dual 

channel transmitter consists of two parallel. Transmitter signal. The first transmitter 

signal is (t)i(t)x(t)s t 11  ,where (t)xt  is a chaotic signal and (t)i1
 represent the first 

original input which is transmit.  

  

  4.1.3.2 Receiver 

  At the receiver, A Modified hyperbolic sine attractor described in () 

can be used as single response subsystem for dual-channel receiver as follow: rr yx  ,

rr zy  and )(y-xazz rrrr
sinh As show in fig. 4.26, the single channel consist of 

received signals (t)s1 . 

 

 4.3.4 Simulat ion and Experimental Results 

  4.3.4.1 Simulation Results 

   4.3.4.1.1 Dynamical properties 
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Figure 4.25 bifurcation diagram 

 

It can also be considered from Figure 4.25 that the value of a is relatively small when 

initial condition x = 0.1, y = 0 and z = -0.1. For the particular cases of parameters 

considered above, summarizes the Equilibria, eigenvalue and types of equilibrium 

points of the system (4.27).  

 

 

 

Figure 4.26 Chaotic scheme sine hyperbolic attractor using Matlab Simulink. 
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Figure 4.27 Simulation Time domain of x, y and z. 

 

 

 

Figure 4.28 Simulation Phase portraits with at a =0.7. 
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   4.3.4.1.2 Application for chaotic communication 

   Due to the fact that output signal can recover input signal, it 

indicates that it is possible to implement secure communication for a chaotic system. 

Figure 4.24 shows the principle scheme of a general secure communication system 

that employs the masking technique. Figure 4.29 shows Simulink modeling of chaotic 

masking communication circuit of the Rössler Attractor. The presence of the chaotic 

signal between the transmitter and receiver has proposed the use of chaos in secure 

communication systems. The design of these systems depends on the self-

synchronization property of sine hyperbolic Attractor. Transmitter and receiver 

systems are identical except for their initial values, in which the transmitter system is 

0.1, 0, -0.1 and the receiver systems are 0.1, -0.143, and -0.2 as shown in Figure 4.30. 

It is necessary to make sure the parameters of transmitter and receiver are identical for 

implementing the chaotic masking communication. In this masking scheme, message 

signal is added to the synchronizing driving chaotic signal in order to regenerate a 

clean driving signal at the receiver. Thus, the message has been perfectly recovered 

by using the signal masking approach through cascading synchronization in the make 

sure the parameters of transmitter and receivers are identical for implementing the 

chaotic masking communication. In this masking scheme, a message signal is added 

 

 

 

Figure 4.29 shows Simulink modeling of chaotic masking communication. 
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Figure 4.30 Synchronization results input and recovered output signal. 

 

to the synchronizing driving chaotic signal in order to regenerate a clean driving 

signal at the receiver. Thus, the message has been perfectly recovered by using the 

signal masking approach through cascading synchronization in the sine hyperbolic 

Attractor. Computer simulation results have shown that the performance of sine 

hyperbolic Attractor in chaotic masking and message recovery. One disadvantage of 

using one-way coupling method is that compared to this cascading method, it takes 

longer to synchronize the coupled systems, especially when the coupling parameter is 

small. This may cause problems in practical applications such as secure 

communications since information may be delayed or lost during the first period of 

matching time Rössler Attractor. Computer simulation results have shown that the 

performance of sine hyperbolic Attractor in chaotic masking and message recovery. 

One disadvantage of using one-way coupling method is that compared to this 

cascading method, it takes longer to synchronize the coupled systems, especially 

when the coupling parameter is small. This may cause problems in practical 

applications such as secure communications since information may be delayed or lost 

during the first period of matching time. 
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Figure 4.31 Synchronize errors. 

 

  4.1.4.3 Experimental Results 

   4.3.4.2.1 Dynamical properties 

 

 

 

Figure 4.32 Chaotic circuits (a) design chaotic circuit and (b) real chaotic circuit. 
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Figure 4.33 Result chaotic attractor of real electronics circuit. 

 

4.4 Application for walky-talky communication 

 4.4.1 Design circuit 

 

 

Figure 4.34 Chaotic circuit transmitters. 
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Figure 4.35 Chaotic circuit receivers. 

 

 

 

Figure 4.36Chaotic masking circuit. 
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Figure 4.37 Chaotic synchronizes circuit. 

 

 

 

Figure 4.38 Switching control sending and receive circuit. 
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Figure 4.39 Design Schematic of chaotic communication application for walky-talky. 

 

 

 

 



110 

4.4.1 Experimental  

 This section, implemental real electronics circuit for includes chaotic 

communication application for walky-talky, consist of chaotic transmitter circuit, 

receiver circuit, chaotic masking circuit, chaotic synchronization circuit, switching 

control sending and receive circuit and walky-talky module. 

 

 

 

Figure 4.40 Real chaotic circuit transmitter. 

 

 

 

Figure 4.41 Chaotic circuit receivers. 
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Figure 4.42 Chaotic masking and chaotic synchronization circuit. 

 

Figure 4.43 Real circuit switching control sending and receive circuit. 
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Figure 4.44 Real circuit chaotic communication application for walky-talky. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 

Conclusion 

 

5.1 Rössler Attractor using Diode Equation 

 This section focuses on the new Rössler chaotic Attractor’s chaotic oscillator 

circuits is designed from Equation 4.1 and can be described by Bifurcation, Lyapunov 

Exponents, and Kaplan-Yorke Dimension, implement chaotic circuit and their 

applications in signal masking communications. New Rössler Attractor’s chaotic 

oscillator circuits has were designed and simulated. Chaotic signal masking circuits 

were realized using Matlab-Simulink and real circuit. Related figures in Figure 4.12 

point out that Matlab-Simulink and Real circuit outputs prove the same conclusions. 

We have demonstrated in simulations that Chaos can be synchronized and applied to 

secure communications. We suggest that this phenomenon of chaos synchronism may 

serve as the basis for little known new Rössler Attractor to achieve secure 

communication. Simulation results are used to visualize and illustrate the 

effectiveness of new Rössler chaotic system in signal masking. All simulations results 

performed on Rössler chaotic system are verified the applicable of secure 

communication. 

 Result experiment, we can implement chaotic circuit has high stability and 

application for two channel chaotic communication. The synchronization of chaotic 

systems offers an interesting possibility to send secure information via chaotic signals, 

generated it her by electronic circuit. 

 

5.2 Chaotic jerk Attractor 

 This paper has presented a very simple autonomous RC chaotic jerk oscillator 

with nine electronic components. The nonlinearity required for chaos is implemented 

through the use of a well-known diode equation. Basic dynamical properties are 

described including Equilibria, eigenvalue of Jacobian matrix, chaotic attractors, time-

domain waveforms and bifurcations. Potential application of such a simple 

autonomous RC chaotic jerk oscillator is presented in message-masking and 

synchronization for secure digital communications. The results show that the 



114 
 

chaotically masked message is fully synchronized at the receiver through the use of 

very simple circuit. Consequently, the proposed new paradigm on secure 

communication schemes offers not only a simple mathematical system, but also very 

cost-effective circuit and system implementations. 

 This system we can implement very cost-effective circuit but application for 

communication can be quite difficult because this circuit has been low stability. 

 

5.3 A Back-to-Back Twisted Chaotic Jerk Attractor using Inherent 

Hyperbolic Sine Function 

 This section we implement electronics circuit form on chaotic Jerk attractor 

using Inherent hyperbolic sine function and synchronize of chaotic Jerk attractor 

using Inherent hyperbolic sine function and its application in signal masking and 

secure communications. The Pecora – Carroll identical cascading synchronizations 

method is used. The behavior of the response system depends on the behavior of the 

drive system, but is not invertible. We have demonstrated in simulations and also 

proved in real electronic circuits that chaos can be synchronized and applied to secure 

communications. We suggest that this phenomenon of chaos synchronicity may serve 

as the basis for little- known chaotic Jerk attractor using Inherent hyperbolic sine 

function to achieve secure communication. Chaos synchronizations and chaos 

masking were realized using Matlab – Simulink, real electronics circuit and also real 

electronic experimental applications. Related in Figures. 4.28 – 4.30 for 

synchronization and Figures. 4.31, 4.32 and 4.33 for masking communication show 

that Matlab – Simulink and also real electronic experimental application results prove 

the same conclusions. 

 

5.4 Application for walky-talky communication 

 Section first, Design schematic for chaotic masking communication form 

chaotic Jerk attractor using Inherent hyperbolic sine function because chaotic Jerk 

attractor using Inherent hyperbolic sine function have simple circuit and high stability 

it’s easy to create a secure communication system. 
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 Section second, implement circuit for communication from general circuit op-

amp such as summing amplifier, switching relay and buffer op-amp, consist of circuit 

application for chaotic communication walky-talky.  
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1. Matlab code for Bifurcations 

function Bifurcation 

clear all 

t  = 0: 0.01: 100; 

y0 = [1.6 ; -1 ; 0.09]; 

 

xmax          = 1; 

xmin = 0; 

Sample_Points = 10; 

Step_Size=(xmax-xmin)/Sample_Points; 

v  = zeros(Sample_Points+1,length(t)); 

tp = zeros(Sample_Points+1,1); 

 

globalgramma delta c 

delta = 0.4; 

c=1; 

  

for i = 1: 1: Sample_Points+1; 

gramma = (i-1)*Step_Size+xmin; 

    [t, y] = ode45(@ODE, t, y0); 

    A = y(:,2)'; 

for j = 1: 1: length(A) 

h(i, j) = A(1, j); 

end 

v(i,:) = feval('FindMax', h(i,:)); 

v(i, 1: 15000) = 0; 

tp(i) = (i-1)*Step_Size+xmin; 

end 

 

subplot(2, 2, 1) 

plot(tp,v,'b.','MarkerSize',4.5) 

xlabel('Parameter a', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 
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ylabel(      'x max', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

 

function F = ODE(t, f)     

globalgramma delta c 

 

x = f(1); 

y = f(2); 

z = f(3); 

F = zeros(size(f)); 

F(1) = -y-z; 

F(2) =x+a*y; 

F(3) = -z+b*exp(x);  

 

function g = FindMax(h) 

g=zeros(1,length(h(1,:))); 

for k = 2: 1: (length(h(1,:))-1) 

if (h(1, k-1)<h(1, k))&&(h(1, k)>h(1, k+1)) 

g(1, k) = h(1, k);  

end 

end 

function g = FindMax(h) 

g=zeros(1,length(h(1,:))); 

for k = 2: 1: (length(h(1,:))-1) 

if (h(1, k-1)<h(1, k))&&(h(1, k)>h(1, k+1)) 

g(1, k) = h(1, k);  

end 

end 
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2. Matlab code for Poincare 

function plotPoincareMap_3 

clearall 

Fs = 1e3; 

t  = (0: 1/Fs: 5000); 

y0 = [1; 0; 1]; 

global a b 

a = 0.2; 

b = 0.7e-3; 

[t, y] = ode45(@ODE, t, y0); 

L=length(y(:,1)); 

x = y'; 

 

C1_2=zeros(1,L); 

C1_3=zeros(1,L); 

k1=0; 

for i1=2: L 

if (x(1,i1)<(0+0.1))&&(x(1,i1)>(0-0.1)) 

        k1=k1+1;  

        C1_2(k1)=x(2,i1); 

        C1_3(k1)=x(3,i1); 

end 

end 

 

C2_1=zeros(1,L); 

C2_3=zeros(1,L); 

k2=0; 

for i2=2: L 

if (x(2,i2)<(0+0.1))&&(x(2,i2)>(0-0.1)) 

        k2=k2+1; 

        C2_1(k2)=x(1,i2); 

        C2_3(k2)=x(3,i2); 

end 
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end 

 

C3_1=zeros(1,L); 

C3_2=zeros(1,L); 

k3=0; 

for i3=2: L 

if (x(3,i3)<(0+0.1))&&(x(3,i3)>(0-0.1)) 

        k3=k3+1; 

        C3_1(k3)=x(1,i3); 

        C3_2(k3)=x(2,i3); 

end 

end 

 

subplot(2, 2, 2) 

plot(C1_2(1:k1),C1_3(1:k1),'b.','MarkerSize',1) 

xlabel('y', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

ylabel('z', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

 

subplot(2, 2, 3) 

plot(C2_1(1:k2),C2_3(1:k2),'b.','MarkerSize',1) 

xlabel('x', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

ylabel('z', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

 
subplot(2, 2, 4) 

plot(C3_1(1:k3),C3_2(1:k3),'b.','MarkerSize',1) 

xlabel('x', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

ylabel('y', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

 
function F = ODE(t, f) 

global a b 

x = f(1); 

y = f(2); 

z = f(3); 
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F = zeros(size(f)); 

F(1) = -y-z; 

F(2) = x+a*y; 

F(3) = -z+b*exp(x); 

 

3. Matlab code for Power spectrum 

function PowerSpectrum_3 

Fs = 1e3; 

t  = 0: 1/Fs: 500; 

y0 = [1.6; -1; 0.09]; 

global a 

a = 20; 

 

[t, y] = ode45(@run_Attractors, t, y0); 

f = y(50000:length(y),:); 

 

PS1 = (abs(fft(f(:,1)))/length(f(:,1))).^2; 

Hmss1 = dspdata.msspectrum(PS1, 'Fs', Fs); 

subplot(2, 2, 2) 

plot(Hmss1); 

ylabel('Power x (dB)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 
'bold'); 

xlabel('Frequency (Hz)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 
'bold'); 

 

PS2 = (abs(fft(f(:,2)))/length(f(:,2))).^2; 

Hmss2 = dspdata.msspectrum(PS2, 'Fs', Fs);  

subplot(2, 2, 3) 

plot(Hmss2); 

ylabel('Power y (dB)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 
'bold'); 

xlabel('Frequency (Hz)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 
'bold'); 
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PS3 = (abs(fft(f(:,3)))/length(f(:,3))).^2; 

Hmss3 = dspdata.msspectrum(PS3, 'Fs', Fs);  

subplot(2, 2, 4) 

plot(Hmss3); 

ylabel('Power z (dB)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 
'bold'); 

xlabel('Frequency (Hz)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 
'bold'); 

 

function F = run_Attractors(t, f) 

global a b 

x = f(1); 

y = f(2); 

z = f(3); 

F = zeros(size(f)); 

F(1) = -y-z; 

F(2) = x+a*y; 

F(3) = -z+b*exp(x); 

 

4. Matlab code for Attractor 

function Attractors_3 

Fs = 1e3; 

t  = 0: 1/Fs: 500; 

y0 = [1.6; -1; 0.09]; 

global a 

a = 20; 

 

[t, y] = ode45(@run_Attractors, t, y0); 

f = y(50000:length(y),:); 

 

subplot(2, 2, 1) 

plot3(f(:,1), f(:,2), f(:,3)); 
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xlabel('x', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

ylabel('y', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

zlabel('z', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

 

subplot(2, 2, 2) 

plot(f(:,1), f(:,2)); 

xlabel('x', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

ylabel('y', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

 

subplot(2, 2, 3) 

plot(f(:,1), f(:,3)); 

xlabel('x', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

ylabel('z', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

 

subplot(2, 2, 4) 

plot(f(:,2), f(:,3)); 

xlabel('y', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

ylabel('z', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold') 

 

function F = run_Attractors(t, f) 

global a b 

x = f(1); 

y = f(2); 

z = f(3); 

F = zeros(size(f)); 

F(1) = y-z; 

F(2) = x+a*y; 

F(3) = -z+b*exp(x); 
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5. Matlab code for Time Domain 

 
function TimeDomainSignals_3 

Fs = 1e3; 

t  = 0: 1/Fs: 500; 

y0 = [1.6; -1; 0.09]; 

global a b 

a = 20; 

 

[t, y] = ode45(@run_Attractors, t, y0); 

f = y(50000:length(y),:); 

 

subplot(2, 2, 1) 

plot(t, y(:,1), t, y(:,2), t, y(:,3)); 

xlabel('Time (s)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

ylabel('(V)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

 

subplot(2, 2, 2) 

plot(t, y(:,1)); 

xlabel('Time (s)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

ylabel('x (V)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

 

subplot(2, 2, 3) 

plot(t, y(:,2)); 

xlabel('Time (s)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

ylabel('y (V)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

 

subplot(2, 2, 4) 

plot(t, y(:,3)); 

xlabel('Time (s)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

ylabel('z (V)', 'FontSize', 16, 'FontName', 'Cordia New', 'FontWeight', 'bold'); 

 

function F = run_Attractors(t, f) 
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global a b 

x = f(1); 

y = f(2); 

z = f(3); 

F = zeros(size(f)); 

F(1) = -y-z; 

F(2) = x+a*y; 

F(3) = -z+b*exp(x); 
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