
PRIVATE PERMISSION BLOCKCHAIN FOR OPTIMIZED

INVOICE MANAGEMENT SYSTEM

Thansinee Pichaibunditkun

A Thesis in Partial Fulfillment of the Requirements

 for the Degree of Master of Science Program in Information Technology

Graduate School

Thai-Nichi Institute of Technology

Academic Year 2022

Thesis Topic Private Permission Blockchain for Optimized Invoice

Management System

By Thansinee Pichaibunditkun

Field of Study Information Technology

Thesis Advisor Asst.Prof.Dr.Ferdin Joe John Joseph

 The Graduate School of Thai-Nichi Institute of Technology has been approved

and accepted as partial fulfillment of the requirement for the Master’s Degree

 ……………………………………….. Dean of the Graduate School

 (Assoc.Prof.Dr.Warakorn Srichavengsup)

 Month……… Date……… Year…….…….

Thesis Committees

 ……………………………………….. Chairman

 (Assoc.Prof.Dr.Kuntpong Woraratpanya)

 ……………………………………….. Committee

 (Dr.Sarayut Nonsiri)

 ……………………………………….. Committee

 (Dr.Pramuk Boonsieng)

 ……………………………………….. Advisor

 (Asst.Prof.Dr.Ferdin Joe John Joseph)

 iii

 THANSINEE PICHAIBUNDITKUN : PRIVATE PERMISSION BLOCKCHAIN

FOR OPTIMIZED INVOICE MANAGEMENT SYSTEM. ADVISOR :

ASST.PROF.DR.FERDIN JOE JOHN JOSEPH, 67 PP.

 Blockchain technology has become popular in the recent years due to Bitcoin

and Ethereum which are potential in terms of security, transparency and sharing in the

same network by Peer-To-Peer network. Though this technology has high costing, it is

worth to use in the businesses to reduce fraudulences from inside and outside of

organization. Invoice system is a technology that all companies invest to protect the data

of invoice management because it is important for analysis by the trends of business each

year. In this paper the use of blockchain technology to protect the data of invoice by

developing the invoice management system with smart contract for invoice rules to

approve, reject, and to protect the data is proposed to find out changes of invoice in

blockchain network system by a web application in intranet to manage the limitation of

small business. The conceptual framework and the output obtained by the developed

system shows the feasibility to develop a private blockchain system for invoice

management.

Graduate School Student’s Signature………………………

Field of Study Information Technology Advisor’s Signature………………………

Academic Year 2022

iv

Acknowledgement

 First of the foremost, I would like to express my deep appreciation to Asst. Prof.

Dr. Ferdin Joe John Joseph accepted for my ideas and supported my Master’s Degree.

Without him, the dissertation would not be possible and completed. Furthermore, I would

like to express my gratitude to my research committee, Assoc. Prof. Dr. Kuntpong

Woraratpanya, Dr. Sarayut Nonsiri, and Dr. Pramuk Boonsieng for their encouragement

and valuable suggestions on my research.

 Moreover, I would like to express my sincerest thank you Ms. Arunotai Uoonjai

who always supported and recommended the ideas of front end and coordinate for

completely the research in a technicians part. My life would be harder without her

assistant.

 Especially, a special thank you to Mrs. Benjamas Pichaibunditkul for her

positive attitude and motivated me to do this paper.

 Finally, I would like to thank you all support from my friends and Thai-Nichi

Institute of Technology that is a part of my thesis achievement. I am grateful for the

opportunity from the Thai-Nichi Institute of Technology that provided me the different

knowledge from my background.

Thansinee Pichaibunditkun

 v

Table of Contents

 Pages

Abstract ... iii

Acknowledgements ... iv

Table of Contents .. v

List of Figures ... vii

Chapter

 1 Introduction .. 1

 1.1 Statement of the Problem .. 1

 1.2 Objectives of the Study ... 3

 1.3 Scope and Limitations ... 3

 1.4 Structure of the Thesis .. 3

 2 Literature Reviews ... 4

 2.1 Related Technologies .. 4

 2.2 Related Tools .. 8

 2.3 Related Research ... 9

 3 Methodology .. 15

 3.1 Determination of the Principles, Rationale, and Problems 15

 3.2 Literature Review .. 17

 3.3 Determination of the Objectives, Assumptions, and Scope 17

 3.4 Research Design and Defining a Conceptual Framework for the

 Research ... 17

 3.5 Development and Processes .. 18

 3.6 Production and Results.. 28

 3.7 Conclusion and Recommendations ... 29

 vi

Table of Contents (Continued)

Chapter Pages

 4 Production and Results ... 30

 4.1 Dashboard Page... 32

 4.2 Creating an Invoice Page .. 33

 4.3 Checking the Data Page .. 35

 4.4 Searching the Data Page ... 39

 4.5 Validating Page ... 42

 5 Conclusion and Future Research .. 45

References ... 47

Appendices .. 50

 Appendix A. Command code for start node (.text) .. 51

 Appendix B. Source Code for Create the Genesis Block (.json) 53

 Appendix C. Source Code of Smart Contract (.sol) ... 56

 Appendix D. Source Code for API (.py) .. 60

Biography .. 67

 vii

List of Figures

Figures Pages

 2.1 Distributed ledgers ... 5

 2.2 Text outputs after hashing .. 7

 2.3 The evolution of the World Wide Web (Web 1.0 - 2.0) 8

 2.4 Architecture of Hyperledger Besu .. 8

 2.5 The difference between IBFT2.0 and Clique ... 9

 2.6 Model of an electronic invoice folder system .. 10

 2.7 The architecture for an electronic invoice folder system 10

 2.8 Compared results for the paper .. 11

 2.9 Hyperledger Besu performance evaluation architecture 12

 2.10 A comparison of Hyperledger Besu’s consensus protocols 13

 2.11 Tested parameters in the experiments .. 14

 3.1 Work process for the research .. 15

 3.2 Criteria for consideration for using blockchain technology 16

 3.3 Conceptual framework for research ... 18

 3.4 Developing the programming of the invoice system 19

 3.5 A smart contract to get the result from the user ... 19

 3.6 Smart contract coding to check the data from the user 20

 3.7 Deployed contracts for checking the data .. 20

 3.8 Coding of the configuration of the blockchain ... 22

 3.9 Structure of each node in setting up the system ... 22

 3.10 Structure of each node in setting up the system ... 23

 3.11 All nodes would be linked together and start the blockchain 24

 3.12 Command for nodes 2 - 4 ... 24

 3.13 Setting up the network of Hyperledger Besu at Metamask 25

 3.14 Configuration Metamask was done for transection .. 25

 3.15 Compiling and deploying the smart contract ... 26

 3.16 Postman for creating an invoice request .. 27

 3.17 Postman for validating a data request .. 28

 viii

List of Figures (Continued)

Figures Pages

 4.1 Origin of the coding ... 30

 4.2 Flowchart of the API file .. 31

 4.3 Coding of the dashboard page .. 32

 4.4 Flow of the dashboard page ... 32

 4.5 Dashboard page from the website .. 33

 4.6 Coding of creating an invoice page 1 ... 33

 4.7 Coding of creating an invoice page 2 ... 34

 4.8 Flow of creating an invoice page ... 34

 4.9 Return status: “Success” ... 35

 4.10 Return status: “Fail” ... 35

 4.11 Checking the data page .. 36

 4.12 Coding checking the data page ... 36

 4.13 Flow of checking the date page .. 37

 4.14 Return status: “true” ... 38

 4.15 Return status: “false” .. 38

 4.16 Searching the data page .. 39

 4.17 Coding of searching the data page ... 39

 4.18 Flow of searching the data page ... 40

 4.19 Return searching the data page if the invoice was created in the system,

 then get the hash key ... 41

 4.20 Return searching the data page if the invoice was not created in the system,

 then get “Invoice ID not Match” ... 41

 4.21 Validating page .. 42

 4.22 Coding of the validating page .. 42

 4.23 Flow of the validating page .. 43

 4.24 Return the validating page if the ID and Value did not match 44

 4.25 Return the validating page if the ID and Value did not match 44

1

Chapter 1

Introduction

1.1 Statement of the Problem

 A business can be described as an organization or enterprising entity that

engages in professional, commercial, or industrial activities [1]. The business can be for

profit entities or a non-profile organization which depends on the purpose of the business

owner. The range of businesses is also different with sole proprietorships, partnerships to

large, international corporations. Furthermore, business comprises a variety of fields; for

example, real estate, banking, and so on. However, all businesses still have the same

objective to survive, grow, and have stability.

 In addition, each organization is composed of various departments, such as

Human Resources, Sales, Marketing, and Finance, which work together to achieve the

organization’s objective. Consequently, many organizations share information in each

department so to work together to find ways to initiate direct and indirect profit.

Therefore, information security is a major concern in every organization, especially in the

Finance Department.

 The Finance Department is responsible for obtaining and handling money and

other assets on behalf of the organization. It also has the responsibility to provide an

economic analysis to improve the organization’s business strategies. As such, the Finance

Department has to provide many documents about the organization’s situation; for

example, a permanent file (ex. company certificate and financial statement), purchasing

document (ex. purchase request and purchase order), sales tax and input tax documents,

paying off debt (ex. receipt voucher and invoice), and other documents. From the

example, it can be seen that there are numerous important documents, which should not

be disclosed outside the organization because this would have an impact on the stability

and strategies.

 An invoice is not the most important financial document, but it shows a

customer’s requirement and explains about the business’s cash flow and finances. Mostly,

small businesses also do not give precedence to document management, and document

security is essential not only for data protection compliance, but also for maintaining trust

2

with the customer. However, trust is not the only reason to provide document security,

but there are also many other reasons, such as minimizing the risk of a data breach, the

financial impact of a data breach, customer confidence in the organization’s products and

services, reputational damage, and the rise of cybercrime. [2] Findex Group Limited, a

financial consultant company in Australia, has provided an article on their website about

the invoice hacker or Invoice Redirection, as cybercriminals are impersonating businesses

and suppliers, accessing emails, and intercepting invoices. The hacker sends the email

with an invoice, including changes to their bank account details and asks the person to

pay to the hacker’s account. These business email scams cause businesses significant

financial damage, thus accounting for 63 percent of all business losses reported by

Scamwatch. The average loss is nearly US $30,000/year [3].

 Blockchain has been a buzzword for the past few years, which people know

from Bitcoin, Ethereum, and other digital currencies. Blockchain is a shared, immutable

ledger that facilitates the process of recording transactions and tracking assets in a

business network. An asset can be tangible (a house, car, cash, and/or land) or intangible

(intellectual property, patents, copyrights, and/or branding). Virtually anything of value

can be tracked and traded on a blockchain network, consequently reducing risk and

saving costs for all involved [4]. In Thailand, many industries would like to apply

blockchain technology to their working operations because people trust the system that

has enhanced security, greater transparency, instant traceability, increased efficiency and

speed, and automation.

 Hence, blockchain in the invoice management system would be helpful for a

user who works in the financial field because he/she could track any transaction from the

past until the present by using a hashing algorithm in the blockchain. As a consequence,

the document would be saved in a private blockchain only by approval of the validators (a

proof-of-work process) to build the new block and if consensus succeeds, add the block to

the chain. Moreover, the block or document could not be changed that is the reason why

blockchain would be appropriate for the financial field.

 Encryption is at the heart of what makes a block special. Blocks are assigned a

cryptographic hash, which are generated exclusively for its data and with the hash for the

previous block. Hash work is like a fingerprint for accessing the data if the hash becomes

completely different. Thus, that block's adjusted hash would also be passed to, and

3

recorded with, the subsequent block. In case a hacker changes one bit, the recorded hash

for that block would not match the block's new hash, and the blockchain would alert the

administrators [5]. Hence, the security of blockchain has received the trust by many

people.

 In this study, blockchain technology was used for an invoicing system by

utilizing a private blockchain to offer small businesses with the confidence, security, and

efficiency that they would need at a reduced cost of investment.

1.2 Objectives of the Study

 1.2.1 To offer a blockchain-based invoicing management solution for usage in

a private network and restrict authorization to the relevant parties.

 1.2.2 To determine if a system would be suitable for usage by small business

firms.

 1.2.3 To deliver the system’s counterfeit invoice result.

1.3 Scope and Limitations

 1.3.1 The prototype would only be used for small businesses.

 1.3.2 The Hyperledger Besu would be used, which is an open-source Ethereum

client for only a private network.

1.4 Structure of the Thesis

 1.4.1 Chapter 1 Introduction

 1.4.2 Chapter 2 Literature Review

 1.4.3 Chapter 3 Research Methodology

 1.4.4 Chapter 4 Production and Results

 1.4.5 Chapter 5 Conclusion and Future Research

4

Chapter 2

Literature Reviews

 This research provided the design and developed a prototype of an invoice

system by using blockchain technology to prove that this form of technology would be

suitable for an invoice system in a small business. The literature review provided the

related technology, tools, and research.

 2.1 Related Technologies

 2.1.1 Blockchain technology

 2.1.2 Consensus type

 2.1.3 Smart contract

 2.1.4 Hashing algorithm

 2.1.5 Web3

 2.2 Related Tools

 2.2.1 Hyperledger Besu

 2.3 Related Research

 2.3.1 One method for implementing privacy protection of electronic

invoices based on blockchain

 2.3.2 Performance analysis of Hyperledger Besu in a private blockchain

2.1 Related Technologies

 2.1.1 Blockchain technology

 Blockchain technology refers to a chain of time stamped and immutable

blocks, which are linked to each other using cryptography [6]. Peer-to-peer network has

been applied for blockchain technology that each node is interconnected to another node.

However, each transaction must validate the transactions and achieve consensus by a

"miner" to create the proof of work. The blockchain stores the data by “Distributed Ledger

Technology”. When a transaction occurs, every node would receive an announcement

(Figure 2.1).

5

Figure 2.1 Distributed ledgers

 In 2008, Nakamoto introduced Bitcoin that was the first proposed

cryptocurrency, which introduced the blockchain as a distributed infrastructural

technology [7]. Bitcoin allows the user to securely transfer cryptocurrencies named

“Bitcoins” without a centralized regulator. This is also the concept for Ethereum, NXT,

and Hyperledger Fabric.

 2.1.2 Consensus type

 Blockchain technology has a key aspect of determining which the user

publishes to the next block [8]. There are many possible consensus models used for

permission as the blockchain does not need to have the trust of a third party to provide the

validation. Hence, the consensus type is more important for the approval node to the

block. This is as follows:

 - Proof of Work Consensus Model (POW)

 There is a consensus process by using mathematics to proof the

transaction that uses more time, and it would also use a miner to validate the transaction.

The miner would receive the compensation after proofing the transaction to the

blockchain. This consensus model is used for Bitcoin in a public blockchain.

 - Proof of Stake Consensus Model (POS)

 The validator must have the asset for completing the transaction. If the

validator has a lot of assets, he/she would have a high opportunity to receive the authority

6

to complete the transaction and get the compensation. This consensus model is used for

Ethereum in a public blockchain.

 - Proof of Authority Consensus Model (POA)

 The validator is clearly determined by everyone or a group of authority.

The consensus would only be approved by the validator to verify the transactions and

build new blocks. It is mostly used for a private blockchain, such as Hyperledger Besu.

 2.1.3 Smart contract

 In the 1990s, a cryptographer named Szabo coined the term “smart

contract” and defined it as “a set of promises, specified in digital form, including

protocols within which the parties perform on the other promises.” [9] Since the concept

was accepted, smart contracts have evolved, especially after the introduction of Bitcoin in

2009.

 Smart contracts are simply programs stored on a blockchain that run

when predetermined conditions are met [10]. They are normally used to automate the

execution of an agreement, and all participants would be immediately certain of the

outcome without any intermediary’s involvement or time loss. A smart contract is mostly

used when releasing funds to the appropriate parties, registering a vehicle, sending

notifications, or issuing a ticket. When the transaction is completed, the blockchain would

be updated; therefore, the transaction could not be changed. The transaction could only be

accessed by a person who has been given permission.

 2.1.4 Hashing algorithm

 Hash functions are useful for a security application by a mathematical

function, which converts the numerical input value into another compressed numerical

value. Cryptographic hash functions use a combination of mathematical functions that

convert the input of a variable size to an output of a fixed size, which is referred to as a

hash. They are designed in such a way that the results are irrevocable, i.e., the hash

function should only go one way.

 SHAs are one of the most widely used hashing algorithms because of

their effectiveness. SHAs are used to maintain the veracity of the files and serve the

7

purpose of ordinary hash functions, which is to check for duplicate data or file corruption

during a transfer with the help of checksums. [11]

Figure 2.2 Text outputs after hashing

 2.1.5 Web3

 Web3 is a concept for a decentralized web to be built, operated, and

owned by its users. Web3 puts power in the hands of individuals rather than corporations.

 When Web 1.0 was established in 1989 at CERN, Geneva by Berners-

Lee, the first inception was mainly static websites owned by companies with no

interaction with a user - individual. Web 1.0 was known as “the read-only web” then the

world wide web evolved to Web 2.0 in 2004. Web 2.0 began with the social media

platforms to be “Read-Write” and has continued to do until the present. The companies

providing content to the users also began to provide platforms to share user-generated

content and engage in user-to-user interactions. Mostly, companies get the profit from the

increasing number of users to do advertising. [12]

8

Figure 2.3 The evolution of the World Wide Web (Web 1.0 - 2.0)

 The promise of ‘Web3.0’ was coined by Ethereum co-founder Gavin

Wood for solving the problem that crypto adopters experienced because the website

required too much trust. As a consequence, the concept of Web 3.0 was created to use

blockchain, cryptocurrencies, and non-fungible tokens (NFTs) to give power back from

many companies to the users.

2.2 Related Tools

 2.2.1 Hyperledger Besu

 Hyperledger Besu is an open source Ethereum client developed under the

Apache 2.0 license and written in Java. It runs on public and private networks.

Hyperledger Besu includes a command line interface and JSON-RPC API for running,

maintaining, debugging, and monitoring the node in an Ethereum network [13].

Moreover, Hyperledger Besu has had smart contract development both in public and

private networks.

Figure 2.4 Architecture of Hyperledger Besu

9

 The private network of Hyperledger Besu is not connected to Ethereum

Mainnet or an Ethereum testnet. The private network has to use a different Chain ID and

proof of authority consensus (IBFT2.0 or Clique). Figure 5 compares the difference

between IBFT2.0 and Clique.

Figure 2.5 The difference between IBFT2.0 and Clique

2.3 Related Research

 2.3.1 One method for implementing privacy protection of electronic invoices

based on blockchain

 The Chinese government had a concern about electronic security in 2019.

The government had promoted blockchain technology for researchers by providing

scholars and focusing on cryptography. As such, an invoice system is one research project

that has worked in China.

 For the electronic invoice in China, organizations need to apply for a

legal certificate from the CA Center then they can provide the information of the

electronic invoices, which is encrypted and stored in a block. However, if the invoice is

completely stored in the block and the user needs to check the invoice, he/she would need

to enter the index information to search for the existence of the related invoices. If the

invoices exist, the system would compare the hash value of the invoices element

information with the hash value provided by the user (Figure 2.6).

10

Figure 2.6 Model of an electronic invoice folder system [14]

 The system is divided into the API layer, capability layer, foundation

layer, and storage layer with a different focus for providing a stable and reliable service

for the system (Figure 2.7).

Figure 2.7 The architecture for an electronic invoice folder system [14]

 API layer is concerned with the entry point through the system which

wraps the internal function and assembles the services needed to expose an external base.

11

 Capability layer divides the capabilities of the basic services of the

system, but it is finer and smaller than the various services provided by the API layer. The

main purpose of dividing the capability layer is to improve the reusability of the system’s

functions and to build highly cohesive and low-coupling system modules. [14]

 Foundation layer is for supplying some of the basic support in the system.

It is mainly proposed for providing a reliable and stable basic service for the system; for

example, peer-to-peer network, consensus mechanisms, and smart contract.

 Storage layer comprises two parts, which are the index area that stores

information in the way of a B+ tree, and the full amount of encrypted data for the

electronic invoice is stored in the system area.

 In summary, three types of storage have been compared, which are C1

that is an IRS public repository of electronic invoices and is a public repository, C2 is

third party platforms that provides relevant services and capabilities, and C3 is a

blockchain system which is mentioned in this paper. The compared results are shown in

Figure 2.8.

Figure 2.8 Compared results for the paper

 Blockchain technology can provide transmission security, query security,

storage security, privacy protection, and prevention of information abuse by the ability of

the blockchain. Thus, the author recommends the use of a blockchain to provide an

invoice system instead of using other forms of storage to store the invoice’s information.

 2.3.2 Performance analysis of Hyperledger Besu in a private blockchain [15]

 Recently, Ethereum has become one of the mainstream blockchain

platforms for developing enterprise applications. There are many Ethereum clients using

various programming languages like Go, JavaScript, Python, and Java. However, their

12

blockchains do not meet the specific need of the enterprises. In particular, the capability

to enforce membership (permission), provide high performance, and perform private

transactions, which only allows participants of those transactions to access the metadata

or payload. Hyperledger Besu has recently gained much attention in constructing

decentralized enterprise applications. This research studied the performance and

scalability of Hyperledger Besu, the impact of system configurations, and chain

parameters on the performance metrics of the throughput and latency, which had not been

thoroughly studied. This paper would propose a load balance-based performance

evaluation architecture (Figure 2.9).

Figure 2.9 Hyperledger Besu performance evaluation architecture

 POA is more popular than POW in Hyperledger Besu. As such, this

paper presented an in-depth experimental evaluation of Hyperledger Besu for its POA

consensus algorithms (the POAs of Hyperledger Besu are Clique, IBFT 2.0, and QBFT),

which showed its performance characteristics under various configurations. Through

extensive benchmarks, critical parameters were identified that would have an impact on

the performance and scalability of Hyperledger Besu, and the extent of the influence and

the root causes of the identified bottlenecks were analyzed through log analysis.

13

Figure 2.10 A comparison of Hyperledger Besu’s consensus protocols

 Clique is a POA consensus protocol presented in the Ethereum

Improvement Proposal (EIP) 225. In this protocol, this was fixed to set the “signers” as

the authorization to collect and execute the transection to create or mine a block. The

signer would be allowed to seal a block every N/2 + 1 blocks.

 IBFT 2.0 is Istanbul Byzantine Fault Tolerance (IBFT), which is a variant

of the Practical Byzantine Fault Tolerance (PBFT). IBFT is suitable for the blockchain

network, which was first proposed informally in EIP650. IBFT uses a leader-based (or

voting-based) consensus for approving the block through three phases of pre-prepare,

prepare, and commit. Before each round, the selected proposer would propose the new

block proposal and broadcast it with a pre-prepared message. Then, other validators

would enter the state of pre-prepared and broadcast to prepare the message. When

receiving the 2f+1 prepared messages, the validators would enter the prepared state and

then broadcast the committed message. Finally, the validators would wait for the 2f+1

committed message to enter the committed stage so to attach the proposed block to the

chain.

 QBFT was created to resolve the safety and liveness issues from IBFT

from the whole system being caught by two honest nodes locking onto a different block.

Quarum blockchain was proposed and developed a variant of IBFT to “QBFT”.

However, the phases of work were the same as IBFT in order to pre-prepare, prepare, and

commit. Nevertheless, finally, a new block was inserted into the chain by the proposer

after the 2N/3 committed messages. If a consensus was not achieved among all the

14

validators before the predefined time, a round change would happen with all the clock

times being reset.

 In this paper, experiments were set up to conduct testing, which included

the network size, node flavor, load balancing, consensus algorithm, and block period

seconds. The control variate method was also set up to be explored (Figure 2.11).

Figure 2.11 Tested parameters in the experiments

 In this paper, the experiments were set up based on the cloud and each

node was run by a docker. They used the benchmark tool Hyperledger Caliper v0.4.2

with Ethereum SDK v1.4 to connect and test the deployed Hyperledger Besu blockchain

networks. Over 22,500,000 transactions were generated and sent to be deployed in the

system.

 For the result, Hyperledger Besu compared the result of the paper of

Hyperledger Fabric (HLF) and private Ethereum, which were experiments with

Hyperledger Caliper to benchmark and evaluate the performance. It was found that

Hyperledger Besu had limited scalability, block time, and block size. Nonetheless, the

consensus and transaction types had the same performance or at a better level from other

blockchains.

15

Chapter 3

Methodology

 This research designed and developed the prototype of an invoice system based

on blockchain technology. The system provided a private blockchain, which was

appropriate for a small business as it had low security for the data system. There were

seven steps used to conduct the work (Figure 3.1).

Figure 3.1 Work process for the research

3.1 Determination of the Principles, Rationale, and Problems

 Blockchain technology has been gaining much interest for using in an invoice

system because an invoice is a very important document for the company, as it tells a lot

of undisclosed information, such as the customer’s information, rate of the product, and

16

so on. For protection from hacking invoice information or making a fake invoice, the

author selected blockchain technology for the invoice system by using six criteria for

consideration of using blockchain technology (Figure 3.2).

Figure 3.2 Criteria for consideration for using blockchain technology

 In considering the criteria, an invoice management system should use blockchain

technology because an invoice is one of the spreadsheets for storing and needing to be

shared between the company and clients. Therefore, an invoice would be contributed by

more than one person, which they would require information from the seller, and the

accountant would need to provide the data for approval by an authorized person.

17

 However, an invoice cannot be duplicated by the invoice ID or data. This is the

reason why blockchain technology could be applied for this system because the data

would not change and update the information, but the data would be recorded in the

system as always. Hence, this data should be controlled by an authorized person, such as

an accountant or the owner of the company because it is a payment documentation, which

is concerned with the income of the company and all the customer’s details.

 Moreover, every six months to one year, auditing should be processed in each

company. That is the main reason for providing blockchain technology for rechecking the

data in the invoice, tracking the real income-outcome of the company, and reconfirming

that the data were not changed from the system.

3.2 Literature Review

 The author started reviewing the document, which was related to the invoice

system by using the blockchain technology field and studying the problem in each

document. The document scope was in the years 2018 - 2022, and the related tools

technology, such as Solidity Language, Hyperledger Besu, and Smart Contract was used.

The stages of the literature review has been provided in Chapter 2.

3.3 Determination of the Objectives, Assumptions, and Scope

 This process was mentioned in Chapter 1 of this research. The author designed

and developed a prototype of an invoice system, which would be appropriate for a small

business by using private blockchain technology.

3.4 Research Design and Defining a Conceptual Framework for the Research

 For the conceptual framework, this research used Hyperledger Besu for the

private blockchain then created the wallet by Metamark to do the smart contract.

However, the framework needed to work in the web browser then the author provided the

Front-End process for creating the webpage to input the invoice to request for the

approval (POA) to the current block. The Back-End process was created for the API to be

connected to the blockchain then integrated for testing whether the web page was

working or not.

18

Figure 3.3 Conceptual framework for research

3.5 Development and Processes

 Through the development of the system, the smart contract provided the

condition of the system first for finding the ways of programming, such as the data which

the system would need to get an Invoice ID, the total value of the invoice for finding the

way for checking the information then the contract was run by a remixing system for

implementing, complying, and deploying the smart contract to run the transaction. For the

contract, the author used the modified coding of the smart contract from ERC-20 and

ERC-777 to be applied in a small business and selected only the important function of the

standard. Nevertheless, the contract was implemented in a secure way to protect the

important data in the blockchain and fix the condition of the contract in each piece of

information.

 Because the smart contract was used for providing the condition of the system,

a connection with the wallet was needed for the process of approval by the Metamask

wallet, which is a global wallet for Ethereum and easy to use. Moreover, the webpage

provided interface services for the user’s use on the local host, which was connected with

the blockchain and wallet by API. All the development programs are shown in Figure 3.4.

19

Figure 3.4 Developing the programming of the invoice system

 3.5.1 Smart contract

 The smart contract of the program was modified from the standard. As

such, mostly contracts would need to proceed by the need of the user by getting

information from the small company that their need in the invoice system was “To check

the invoice number and value was not changed and can recheck all the time”. Then, the

contract would need to get two items, which would be the Invoice ID and Value (invoice

file) from the user (Figure 3.5).

Figure 3.5 A smart contract to get the result from the user

20

 After receiving the data needed from the user, the condition of checking

the process in the contract was provided for fixing the data type and returning the

information for processing the use of the interface in the frontend and the backend work

in the next step. This contract used the data type of Boolean to call data from true and

false. Moreover, the website provided a simple template and was matched with the user.

As a consequence, the contract hashed the data by using “keccak256”, which was one of

the SHA-3 algorithms for hashing the generator for collecting and matching the data

when the user needed to recheck the information from the blockchain. The coding of

checking the information is shown in Figure 3.6 and checking the data is shown in Figure

3.7.

Figure 3.6 Smart contract coding to check the data from the user

Figure 3.7 Deployed contracts for checking the data

21

 3.5.2 Hyperledger Besu

 Hyperledger Besu had to set up at least four nodes to provide the system

from the consensus (IBFT2.0 requirement) and for approving the block; thus, the liveness

should stay >= ⅔ validators live. Moreover, the requirement of Hyperledger Besu was

Install Java JDK 11 – 16 and Hyperledger Besu packaged binaries for running the system.

After installing all the requirements, the file of the configuration provided the .json

language for configuring the blockchain, chain ID, and other conditions of the

blockchain. For the coding of the configuration file, this included [16]:

 • chainId is the transection signature as the network ID, which provided

data of the chain information and type of blockchain.

 • Muirglacierblock is a milestone block.

 • Ibft2 provided a specific consensus of the protocol in the blockchain

that would use the IBFT2 as POA.

 • Blockperiodseconds is the minimum block time that could be set; for

example, if we set two for “blockperiodseconds”: 2, the new block would be provided

every two seconds.

 • Epochlength is the number of blocks, which would reset all the votes.

 • Requesttimeoutseconds is the timeout of consensus, which would

change the round. Normally, a double number of the blockperiodseconds would be used.

 • Nonce: This would be set at 0x0 that refers to containing information

about the genesis block (first block).

 • Timestamp is creating the date and time of the block.

 • extraData is a recursive length prefix (RLP) encoded string (which is

space efficient) containing the validator’s addresses of the IBFT 2.0 private network.

 • gasLimit is the total gas limit for all transactions. (This blockchain did

not use the gas limit for consensus. Thus, free gas used "0x1fffffffffffff".)

 • Difficulty is the difficulty to create a new block.

 • mixHash is the unique identifier of the block.

 • Coinbase is a network coin base account, which is where all block

rewards for this network would be paid.

22

 For additional information after getting the condition of the configuration

details, the information of the private keys of each node with a balance was set up from

this file to verify the validator’s information of each node. The coding of the

configuration and node structure is shown in Figures 3.8 and 3.9.

Figure 3.8 Coding of the configuration of the blockchain

Figure 3.9 Structure of each node in setting up the system

 To create the genesis block (start Node1), the following command should

be run:

23

besu --data-path=data --genesis-file=..\genesis.json --rpc-http-enabled --rpc-http-

api=ETH,NET,IBFT --host-allowlist="*" --rpc-http-cors-origins="all" --rpc-http-

port=8545

 The command line would allow the user to enable: [17]

 • Nodes and accounts permission using --permissions-nodes-config-file-

enabled and --permissions-accounts-config-file-enabled.

 • The JSON-RPC API using --rpc-http-enabled.

 • The ADMIN, ETH, NET, PERM, and IBFT APIs using --rpc-http-api.

 • All-host access to the HTTP JSON-RPC API using --host-allowlist.

 • All-domain access to the node through the HTTP JSON-RPC API using --

rpc-http-cors-origins.

 Then, find the enode URL display from Node1 (Figure 3.10) as a peer

and update the permission to each node. Furthermore, put the enode URL on each node

and run the node to peer all the nodes together. If the nodes are peered together and

completely, the system would start as shown in Figure 3.10.

Figure 3.10 Structure of each node in setting up the system

24

Figure 3.11 All nodes would be linked together and start the blockchain

 For nodes 2 - 4, a different command was used for connecting to the

same enode but had a different port (Figure 3.12).

Figure 3.12 Command for nodes 2 - 4

 3.5.3 Metamask

 To connect the wallet through the blockchain for connecting to the smart

contract with the blockchain, the Metamask wallet was used as the gateway to the

blockchain apps between the smart contract (on the remix webpage) to the Hyperledger

Besu (blockchain).

25

Figure 3.13 Setting up the network of Hyperledger Besu at Metamask

Figure 3.14 Configuration Metamask was done for transection

26

 After setting up the network with Hyperledger Besu in Metamask, the

remixed contract was complied and ready to deploy for running the smart contract. Then,

the Metamask was connected with the environment on the deploy page (Figure 3.15).

Figure 3.15 Compiling and deploying the smart contract

 If the smart contract was deployed, the file would show on the deployed

contract to display the transection of the smart contract and could provide the transection

for checking the process of the contract or condition. However, all the transections which

happened in the contract were sent to the Metamask for approval from the wallet, and all

the activities were saved on the wallet.

27

 3.5.4 API

 This system was concerned with the user’s interface and needed to

provide the web page. API was used for connecting between the frontend and backend for

communication and providing the service to the user. However, before running the API,

the Hyperledger program was recommended to be run with Postman. [18] All the coding

from the contract and preparation for the frontend page had to pass and get a result

(Figure 3.16).

Figure 3.16 Postman for creating an invoice request

28

Figure 3.17 Postman for validating a data request

3.6 Production and Results

 This stage would be provided in Chapter 4 for the frontend and backend

processes and the flowchart of all the pages. This was provided for the frontend to

understand more about the function and workflow of this paper done for the invoice

management system for a small business.

29

3.7 Conclusion and Recommendations

 This stage would be provided in Chapter 5 for a summary of the total paper and

suggest future research to be a benefit for people who would be working on this project or

who would apply this research to their work.

30

Chapter 4

Production and Results

 This chapter describes the testing whether the system could be used with a

smart contract or not. Additionally, the flow of the program was provided for easy

understanding between the frontend and backend. The various webpages comprising the

Dashboard page, Create page, Check page, Search page, and Validate page are also

included.

 Python language was used for the API file, which imported the function as a

“hashlip” for hashing the file from a .pdf file or .jpeg file to hashing the data (sha256)

then returning the hash password to the user. However, JSON was imported for the call

function from the smart contract to the website.

 The problem of this program was the core error when the blockchain was

provided on the path of the frontend on http://127.0.0.1:5500, but backend used the path

http://127.0.0.1:3502. As a consequence,, the program had to use the core middleware for

adding the origins of the path to the call function (Figure 4.1).

Figure 4.1 Origin of the coding

31

Figure 4.2 Flowchart of the API file

32

4.1 Dashboard Page

 This page showed the total number of invoices in the system by the index page.

This was the only page that could use the method to show the total number from the

variable “getSizeID” to alert the number of invoices in the blockchain system.

Figure 4.3 Coding of the dashboard page

Figure 4.4 Flow of the dashboard page

33

Figure 4.5 Dashboard page from the website

4.2 Creating an Invoice Page

 The invoice system created the invoice for the blockchain. The created invoice

page was the page for uploading the information of the invoice. This included the Invoice

ID and Invoice value, which could not be duplicated or repeated in the system and

uploaded the file for hashing in the system to show that the invoice had been verified.

Moreover, Web3 was applied on the Api.py file for protecting the data in the blockchain.

Figure 4.6 Coding of creating an invoice page 1

 Moreover, this program did not use the database for storing the data but used

the hash function for hashing the data to SHA256 to be provided as the key of the file to

access and for checking if the invoice had been created in the system yet. However, this

page would return the value as “Success” in the case the file update was a “Success” or

“Fail” when the file had been duplicated in the system (Figures 4.7 – 4.10).

34

Figure 4.7 Coding of creating an invoice page 2

Figure 4.8 Flow of creating an invoice page

35

Figure 4.9 Return status: “Success”

Figure 4.10 Return status: “Fail”

4.3 Checking the Data Page

 After creating an invoice page to the system, the data would be rechecked from

the user to prevent any duplicated work from the user’s part and check if the invoice had

been updated in the system yet. However, the invoice ID would have to provide the full

date for finding the information in the system that would match with the invoice. If the

36

system returned the answer as “true”, the data were in the system, but if not, then the

answer would be “false” (Figures 4.11 – 4.12).

Figure 4.11 Checking the data page

Figure 4.12 Coding checking the data page

37

Figure 4.13 Flow of checking the date page

38

Figure 4.14 Return status: “true”

Figure 4.15 Return status: “false”

39

4.4 Searching the Data Page

 From creating the page, this program hashed the file to the hashing key value by

the SHA256 function. Therefore, the data was checked from the hashing key because it

could be trusted and would not change because it had already received the transaction to

the blockchain. This page was provided for getting the hashing key to the user for using

in the validate page.

Figure 4.16 Searching the data page

Figure 4.17 Coding of searching the data page

40

Figure 4.18 Flow of searching the data page

41

Figure 4.19 Return searching the data page if the invoice was created in the system, then

get the hash key

Figure 4.20 Return searching the data page if the invoice was not created in the system,

then get “Invoice ID not Match”

42

4.5 Validating Page

 Validating the data was the key of this program. After receiving the hashing key

from the search page, the invoice ID had to reconfirm the match with the hashing key.

Consequently, this page would return “Match” for the matching ID and Value or “Not

Match” in the case the ID and value did not match in the system.

Figure 4.21 Validating page

Figure 4.22 Coding of the validating page

43

Figure 4.23 Flow of the validating page

44

Figure 4.24 Return the validating page if the ID and Value did not match

Figure 4.25 Return the validating page if the ID and Value did not match

45

Chapter 5

Conclusion and Future Research

 This chapter summarizes all the results of this research of an invoice management

system for a small business which would be provided by blockchain technology. This

would be one option for a small business to find an opportunity to use the high security of

data. A plan for future research is also provided.

 To offer a blockchain-based invoicing management solution for usage in a

private network and restrict authorization to the relevant parties.

 Referring to the user, the system would require four nodes to build up the chain,

which would require two-thirds of the validators to approve the blockchain. As a result,

the user could offer authorization for validating the data before approving the block. The

required system could then achieve the purpose of the desired investigation.

 To determine if a system is suitable for usage by small business firms.

 By using Hyperledger Besu's technology, basic users may have SSD storage,

which is common in small businesses. The frontend application, on the other hand, would

use the local web browser to upload the data. As a result, the software and the standard

requirements were produced for usage in small businesses.

 To deliver the system’s counterfeit invoice result.

 By comparing the hash number and system, the system was able to supply the

hash function for counterfeiting the transformed data.

 In conclusion, an invoice management system would be a popular application

for usage in businesses since an invoice is a financial statement document that is used for

financial auditing. As a result, the system should be transparent and simple to use. The

author recommends the use of high security for small businesses in order to have a high

degree of protection that they could operate on the company’s computer to save

46

resources. Furthermore, Hyperledger Besu is a blockchain technology that is enterprise-

friendly and makes use of the power of a little computer.

 In the future, the study should be extended to medium to large businesses, and

the concept could be employed to provide an invoicing management system. This should

be shared from a peer-to-peer network to a different chain ID or another computer in

another branch of the organization to determine the performance of blockchain

technology in a public network. Web3 technology is still in development, and there have

been several updates for security and user convenience. However, future research might

have the use of the full Web3 developed invoice management application with other

financial functions, or provide AI technology to identify the words to summarize the

information and go through the system.

 47

References

 48

References

[1] The Economic Times, “What is 'Business,” [Online]. Available: https://economictimes.

indiatimes.com/definition/business. [Accessed: September 4, 2022].

[2] Findex Group Limited, “Cybercrime on The Rise with Invoice Hacking,”

[Online]. Available: https://www.findex.com.au/insights/article/cybercrime-on-

the-rise-with-invoice-hacking. [Accessed: September 4, 2022].

[3] Australian Cyber Security Centre, “Rajiv’s Story,” [Online]. Available: https://

www.cyber.gov.au/acsc/view-all-content/guidance/tax-scam-stories/rajivs-story.

[Accessed: September 4, 2022].

[4] IBM, “What is Blockchain Technology?,” [Online]. Available: https://www. ibm.

com/topics/what-is-blockchain. [Accessed: September 4, 2022].

[5] S. J. Bigelow, “Blockchain: An Immutable Ledger to Replace the Database,”

[Online]. Available: https://www.techtarget.com/searchitoperations/tip/ Blockchain-

An- immutable- ledger-to- replace-the- database. [Accessed: September 5, 2022].

[6] M. Ahmed et al., “Securing medical forensic system using hyperledger based

private blockchain,” Proceedings of the 23rd International Conference on

Computer and Information Technology, ICCIT, Dhaka, Bangladesh, December

19-21, 2020, no page.

[7] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” [Online].

Available: https://bitcoin.org/bitcoin.pdf. [Accessed: August 20, 2022].

[8] D Yaga et al., “Blockchain Technology Overview,” Proceedings by the National

Institute of Standards and Technology Internal Report 8202, NISTIR 8202, New

Jersey, USA, October 6-9, 2018, pp. 2-4.

[9] A. M. Antonopoulos and G. Wood, Mastering Ethereum, USA : O’Reilly Media,

Inc., 2019.

[10] IBM, “Smart Contracts Defined,” [Online]. Available: https://www.ibm.com/th-

en/topics/smart-contracts. [Accessed: October 1, 2022].

[11] S. Kam et al., “Secure hashing algorithms and their comparison,” Proceedings

of the 6th International Conference on Computing for Sustainable Global

Development, INDIACom, New Delhi, India, March 13-15, 2019, pp. 788-792.

 49

[12] Ethereum, “Introduction to Web3,” [Online]. Available: https://ethereum.org/

en/web3/. [Accessed: April 6, 2023].

[13] Hyperledger Besu, “Hyperledger Besu for Private Networks,” [Online].

Available: https://besu.hyperledger.org/en/stable/private-networks/. [Accessed:

September 30, 2022].

[14] J Yang et al., “One method for implementing privacy protection of electronic

invoices based on blockchain,” Proceedings of the IEEE International

Conference on Power Electronics Computer Applications, ICPECA, Shenyang,

China, January 22-24, 2021, pp. 99-104.

[15] C. Fan et al., “Performance analysis of hyperledger besu in private blockchain,”

Proceedings of the 4th IEEE International Conference on Decentralized Applications

and Infrastructures, DAPPS, New Jersey, USA, August 15-18, 2022, pp. 64-73.

[16] T. Heg, “Hyperledger Besu: How to Create an Ethereum Genesis File,”

[Online]. Available: https://consensys.net/blog/quorum/hyperledger-besu-how-to-

create-an-ethereum-genesis-file/. [Accessed: February 15, 2023].

[17] Hyperledger Besu, “Create a Permissioned Network,” [Online]. Available: https://

besu.hyperledger.org/en/stable/private-networks/tutorials/permissioning/. [Accessed:

March 24, 2023].

[18] Hyperledger Besu, “Run with Postman,” [Online]. Available: https://besu.hyperledger.

org/en/stable/private-networks/tutorials/quickstart/?h=postman#run-with-postman.

[Accessed: March 24, 2023].

50

Appendices

51

Appendix A.

Command code for start node (.text)

52

Node 1:

besu --data-path=data --genesis-file=..\genesis.json --rpc-http-enabled --rpc-http-

api=ETH,NET,IBFT --host-allowlist="*" --rpc-http-cors-origins="all" --rpc-http-

port=8545

Node 2:

besu --data-path=data --genesis-file=..\genesis.json --

bootnodes=enode://d532934c26c3c98aa9dc1131372e4a45a0401b98f1834a81818cf1

edb6bf6e672953098709250079ad1bc233e434f59ff61ab4c717f01fc47113a888bddfd

fc3@127.0.0.1:30303 --p2p-port=30304 --rpc-http-enabled --rpc-http-

api=ETH,NET,IBFT --host-allowlist="*" --rpc-http-cors-origins="all" --rpc-http-

port=8546

Node 3:

besu --data-path=data --genesis-file=..\genesis.json --

bootnodes=enode://d532934c26c3c98aa9dc1131372e4a45a0401b98f1834a81818cf1

edb6bf6e672953098709250079ad1bc233e434f59ff61ab4c717f01fc47113a888bddfd

fc3@127.0.0.1:30303 --p2p-port=30305 --rpc-http-enabled --rpc-http-

api=ETH,NET,IBFT --host-allowlist="*" --rpc-http-cors-origins="all" --rpc-http-

port=8547

Node 4:

besu --data-path=data --genesis-file=..\genesis.json --

bootnodes=enode://d532934c26c3c98aa9dc1131372e4a45a0401b98f1834a81818cf1

edb6bf6e672953098709250079ad1bc233e434f59ff61ab4c717f01fc47113a888bddfd

fc3@127.0.0.1:30303 --p2p-port=30306 --rpc-http-enabled --rpc-http-

api=ETH,NET,IBFT --host-allowlist="*" --rpc-http-cors-origins="all" --rpc-http-

port=8548

53

Appendix B.

Source Code for Create the Genesis Block (.json)

54

MILP Code

{

 "genesis": {

 "config": {

 "chainId": 1981,

 "muirglacierblock": 0,

 "ibft2": {

 "blockperiodseconds": 2,

 "epochlength": 30000,

 "requesttimeoutseconds": 4

 }

 },

 "nonce": "0x0",

 "timestamp": "0x58ee40ba",

 "extraData":

"0xf83ea000

0000d594c2ab482b506de561668e07f04547232a72897daf808400000000c0",

 "gasLimit": "0x1fffffffffffff",

 "difficulty": "0x1",

 "mixHash":

"0x63746963616c2062797a616e74696e65206661756c7420746f6c6572616e6365",

 "coinbase": "0x00",

 "alloc": {

 "627306090abaB3A6e1400e9345bC60c78a8BEf57": {

 "privateKey":

"c87509a1c067bbde78beb793e6fa76530b6382a4c0241e5e4a9ec0a0f44dc0d3",

 "comment": "private key and this comment are ignored. In a real chain, the

private key should NOT be stored",

 "balance": "90000000000000000000000"

 },

55

 "f17f52151EbEF6C7334FAD080c5704D77216b732": {

 "privateKey":

"ae6ae8e5ccbfb04590405997ee2d52d2b330726137b875053c36d94e974d162f",

 "comment": "private key and this comment are ignored. In a real chain, the

private key should NOT be stored",

 "balance": "90000000000000000000000"

 },

 "5bCCe4e7206d85C6B8727562b58BaBE298e9B66c": {

 "privateKey":

"0334910fc3f9450d5506a6572415d902e8872b93b7aa620892aab698e62b9289",

 "comment": "private key and this comment are ignored. In a real chain, the

private key should NOT be stored",

 "balance": "90000000000000000000000"

 },

 "Db27962ef68be525Dbc3f0983d2Aa00332dCd926": {

 "privateKey":

"052392f7ff63575c99b2e17a547fc6e35974b5d19dc71b17b260d860bbb120b5",

 "comment": "private key and this comment are ignored. In a real chain, the

private key should NOT be stored",

 "balance": "90000000000000000000000"

 }

 }

 },

 "blockchain": {

 "nodes": {

 "generate": true,

 "count": 4

 }

 }

 }

56

Appendix C.

Source Code of Smart Contract (.sol)

57

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

contract Invoice {

 string [] private ID; // id invoice

 mapping (string=> string) private valueInvoice; // id invoice = data hash

 mapping (string=> string) private hashData; // data hash = id invoice

 function add(string memory _id, string memory _value) public returns (bool){

 // _id = id invoice , _value = data hash

 if ((bytes(_id).length) <= 0 || (bytes(_value).length) <= 0){

 return false;

 }

 else {

 ID.push(_id);

 valueInvoice[_id] = _value;

 hashData[_value] = _id;

 return true;

 }

 }

 function getSizeID() external view returns (uint){

 return ID.length;

 }

 function getValue(string memory _id) public view returns (string memory){

 return valueInvoice[_id];

 }

 function _checkID(string memory _id) public view returns (bool){

 if(bytes(valueInvoice[_id]).length <= 0){

58

 return false;

 }

 else{

 return true;

 }

 }

 function _checkValue(string memory _value) public view returns (bool){

 if(bytes(hashData[_value]).length <= 0){

 return false;

 }

 else{

 return true;

 }

 }

 function isCreateInvoice(string memory _id,string memory _value) external

view returns (bool){

 bool isID = _checkID(_id);

 bool isValue = _checkValue(_value);

 if (isID || isValue){

 return false;

 }

 else

 return true;

 }

 function checkmatch(string memory _id, string memory _value) external view

returns (bool){

 bool isAns = _checkID(_id);

59

 // require(bytes(_id).length > 0, "InVoice not null");

 if (isAns == false){

 return false;

 }

 else {

 if (bytes(_value).length != bytes(valueInvoice[_id]).length) {

 return false;

 }

 return keccak256(abi.encodePacked(_value)) ==

keccak256(abi.encodePacked(valueInvoice[_id]));

 }

 }

 function getID(string memory _value) external view returns(string memory){

 bool isAns = _checkValue(_value);

 if(isAns == false){

 return 'null';

 }

 else{

 return hashData[_value];

 }

 }

}

60

Appendix D.

Source Code for API (.py)

61

pip install python-multipart

import hashlib

from ctypes import addressof

import json

from traceback import print_tb

from web3 import Web3

from web3.middleware import geth_poa_middleware

from fastapi import FastAPI, File, UploadFile, Form

import uvicorn

from fastapi.params import Body

from fastapi.middleware.cors import CORSMiddleware

pk=

'0x052392f7ff63575c99b2e17a547fc6e35974b5d19dc71b17b260d860bbb120b5'

ganache_url = "http://127.0.0.1:8545"

web3 = Web3(Web3.HTTPProvider(ganache_url))

web3.middleware_onion.inject(geth_poa_middleware, layer=0)

abiContract =

json.loads('[{"inputs":[{"internalType":"string","name":"_id","type":"string"},{"inte

rnalType":"string","name":"_value","type":"string"}],"name":"add","outputs":[{"inte

rnalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"

function"},{"inputs":[{"internalType":"string","name":"_id","type":"string"}],"name

":"_checkID","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMu

tability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"_val

ue","type":"string"}],"name":"_checkValue","outputs":[{"internalType":"bool","nam

e":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"intern

alType":"string","name":"_id","type":"string"},{"internalType":"string","name":"_v

alue","type":"string"}],"name":"checkmatch","outputs":[{"internalType":"bool","na

me":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"inte

rnalType":"string","name":"_value","type":"string"}],"name":"getID","outputs":[{"i

62

nternalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"f

unction"},{"inputs":[],"name":"getSizeID","outputs":[{"internalType":"uint256","na

me":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"i

nternalType":"string","name":"_id","type":"string"}],"name":"getValue","outputs":[

{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type"

:"function"},{"inputs":[{"internalType":"string","name":"_id","type":"string"},{"int

ernalType":"string","name":"_value","type":"string"}],"name":"isCreateInvoice","ou

tputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","t

ype":"function"}]')

addressContract =

web3.toChecksumAddress('0x8C8582e2331B731289ff06BefA2382b836b2AD33') #

FILL ME IN

contract = web3.eth.contract(address=addressContract, abi=abiContract)

def getSizeID():

 _num = contract.functions.getSizeID().call()

 return(_num)

def add(_id,_value):

 store_contact = contract.functions.add(_id, _value).buildTransaction({"chainId":

1981, "from": '0xDb27962ef68be525Dbc3f0983d2Aa00332dCd926', "gasPrice":

web3.eth.gas_price, "nonce":

web3.eth.get_transaction_count('0xDb27962ef68be525Dbc3f0983d2Aa00332dCd92

6') })

 # Sign the transaction

 sign_store_contact = web3.eth.account.sign_transaction(store_contact,

private_key=pk)

 # Send the transaction

 send_store_contact =

web3.eth.send_raw_transaction(sign_store_contact.rawTransaction)

 transaction_receipt = web3.eth.wait_for_transaction_receipt(send_store_contact)

63

 return True

def checkIDInvoice(_id):

 isID = contract.functions._checkID(_id).call()

 return(isID)

def checkValueInvoicce(_value):

 isValue = contract.functions._checkValue(_value).call()

 return(isValue)

def ValidateData(_id,_value):

 validate = contract.functions.checkmatch(_id,_value).call()

 return(validate)

def getID(_value):

 id = contract.functions.getID(_value).call()

 return(id)

def getValue(_id):

 value = contract.functions.getValue(_id).call()

 return(value)

def isCreateInvoice(_id,_value):

 isCreate = contract.functions.isCreateInvoice(_id,_value).call()

 return(isCreate)

app = FastAPI()

origins = [

 "http://localhost:5500",

 "http://localhost:3502",

64

 "http://127.0.0.1:5500"

]

app.add_middleware(

 CORSMiddleware,

 allow_origins=origins,

 allow_credentials=True,

 allow_methods=["*"],

 allow_headers=["*"],

)

@app.get("/")

def read_root():

 return {"Hello": "World"}

@app.get("/totalinvoice")

def totalinvoice():

 return {'Total':getSizeID()}

@app.post("/createinvoice")

async def createInvoice(payload: dict = Body(...)):

 _id = payload['id']

 _value = payload['value']

 canCreate = isCreateInvoice(_id,_value)

 if (canCreate):

 add(_id,_value)

 return {'create':'Success'}

 else:

 return {'create':'Fail'}

@app.post("/uploadfile/")

65

async def create_upload_file(ID: str = Form(...),file: UploadFile = File(...)):

 data = file.file.read()

 hash = hashlib.sha256(data)

 _id = ID

 _value = hash.hexdigest()

 canCreate = isCreateInvoice(_id,_value)

 if (canCreate):

 add(_id,_value)

 return {'create':'Success'}

 else:

 return {'create':'Fail'}

@app.post("/searchwithid")

async def searchWithID(ID: str = Form(...)):

 _id = ID

 isData = checkIDInvoice(_id)

 if (isData):

 return getValue(_id)

 else :

 return 'INVOICE ID NOT MATCH'

@app.post("/checkid")

async def checkID(ID: str = Form(...)):

 _id = ID

 return checkIDInvoice(_id)

@app.post("/validatedata")

async def ValidateData_api(ID: str = Form(...),VALUE: str = Form(...)):

 _id = ID

 _value = VALUE

66

 ValidateData(_id,_value)

 if (ValidateData(_id,_value)):

 return 'MATCH'

 else:

 return 'NOT MATCH'

@app.post("/getdatawithid")

async def getDataWithID(payload: dict = Body(...)):

_id = payload['id']

return { 'Data Invoice is ':getValue(_id)}

@app.post("/getdidwithdata")

async def getIDWithData(VALUE: str = Form(...)):

 _value = VALUE

 isID = getID(_value)

 if (isID == 'null'):

 return False

 return { 'ID Invoice is ':isID}

if __name__ == "__main__":

uvicorn.run(app, host="0.0.0.0", port=3502)

 uvicorn.run(app, port=3502)

	001 Cover
	002 Cover for Approval
	003 Abstract
	004 Acknowledgement
	005 Table of Contents
	006 List of Figures
	007 Chapter 1
	007 Chapter 2
	007 Chapter 3
	007 Chapter 4
	007 Chapter 5
	008 Reference
	009 Appendixes

