PERFORMANCE ANALY SIS OF IMAGE CLASSIFICATION
BETWEEN EDGE AND CLOUD COMPUTING

Natthasak Vechprasit

A Thesis Submitted in Partial Fulfillment of the Requirements
For the Degree of Master of Science Program in Information Technology
Graduate Studies
Thai-Nichi Institute of Technology
Academic Year 2024

Thesis Topic Performance Analysis of Image Classification between

Edge and Cloud Computing

By Natthasak Vechprasit
Field of Study Information Technology
Thesis Advisor Dr. Pramuk Boonsieng

The Graduate Studies of Thai-Nichi Institute of Technology has been approved

and accepted as partial fulfillment of the requirement for the Master’s Degree.

.. Vice President for Academic Affairs
(Assoc. Prof. Dr. Warakorn Srichavengsup)
Month.......... Date Year

... Chairperson
(Assoc. Prof. Dr. Annop Monsakul)
... Committee
(Dr. Sarayut Nonsiri)
... Committee
(Acting Sub Lt. Dr. Pichitchai Kamin)
... Advisor

(Dr. Pramuk Boonsieng)

il

NATTHASAK VECHPRASIT : PERFORMANCE ANALYSIS OF IMAGE
CLASSIFICATION BETWEEN EDGE AND CLOUD COMPUTING.
ADVISOR : DR. PRAMUK BOONSIENG, 181 PP.

Image classification has become a major application in the AI era for
connecting the physical and digital worlds. However, it requires intensive graphic
processing power. loT and Edge Computing have become popular approaches for
distributing and offloading the workload from the cloud to the edge. Many edge devices
are powered by an energy-efficient processor that can't execute intensive workloads,
but some may be able to. In this thesis, we studied the overview of image classification
implementation on edge and cloud computing and analyzed the performance to reveal
the opportunity to implement a proper system architecture. The edge and cloud
computing environments studied in this paper are a smartphone, a personal computer,
and a cloud GPU instance with sample applications to simulate real-world scenarios.
The performance is based on the datasets and the processing environment comprising
three factors: ML runtime, hardware, and network. Resulting in six factors: inference
time, end-to-end execution time (including network delays), accuracy, confidence score,

resource usage, and data transfer.

Graduate Studies Student’s signature

Field of Information Technology Advisor’s signature

Academic Year 2024

v

Acknowledgement

I would like to express gratitude to the thesis committee, Assoc. Prof. Dr
Annop Monsakul, Dr. Pramuk Boonsieng, Dr. Sarayut Nonsiri, and Acting Sub Lt.
Pichitchat Kam-in for their helpful guidance and constructive criticism that
significantly influenced my thesis. Without their insightful comments, this thesis would
not have been possible.

Furthermore, I would like to express my deepest appreciation to my family
and my partner for their love and support, which motivated me to complete my master’s
degree.

Additionally, I would like to thank the IT faculty staff and TNI staff for their
facilitation and for providing the necessary resources to carry out this research.

Finally, I hope this thesis will be useful to future researchers and contribute to

the progress of technology and science.

Natthasak Vechprasit

Table of Contents

Page

ADSTIACE. ..ot e il

Acknowledgement.ot v

Table Of CONENTS.euee ittt v

List Of Tables. .. . ouuiei e e vii

LSt Of FIGUIES. ...ttt et e viii
Chapter

1 INtroduction.o 1

1.1 Background.............oooiiiiiiiiiiiiii e 1

1.2 ODBJECHIVES. ...ttt e e et eee e e et e aneenaans 3

1.3 Contributions.o.ouviuiieiiiit e 3

Lid S COPE. ettt 3

1.5 Research Questions...........oovvviiiiiiiiiiiiiiiiiianeenn, 4

L.OHypothesis. ..o, 4

L7 Definitions.ouuiniiiitii e e 4

2 SR GRTUE. - ... Y. .. U e 6

2.1 Edge Computing......c..ovveiniiiinieiieiinieaeenaennaannnns 6

2.2 Image Classification.............ccovvviiiiiiiiiiniaieennenn, 8

2.3 ML Kit & Related Libraries...............ccooivieiinninnnne.. 8

2.4 Related WOrKS. ..o e, 14

2.5 Related Theories.ouueueiniiiii i 22

FRCEI S Rechnologies. .. .alNPS #5, N S 23

3 MethodoLlOZY .. .oueieii i 25

3.1 Conceptual Framework..................c.oooiiiii. 25

3.2 Proposed Method............cooiiiiiiiiiiii 27

Vi

Table of Contents (Continued)

Chapter Page
3 3.3 Environment Setup.......ocovviiniiiiiiiiiiiiiiiiaiaan 28
3.4 Dataset Preparation...............ccooovviiiiiiiiiiiiiiiinin, 31

3.5 Create Image Classifier...................cooooiiiiiiiiinn. 32

3.6 Apply lage Classifier..............oooviiiiiiiiiiiiiii, 37

3.7 Result Gathering..............oooiiiiiiiiiiiiii, 41

3.8 Result ANalysis......o.ovuiviiiiiiiiiiiiii i, 43

4 . T REEEEEERA o TR .. . 45
4.1 Inference Time..........o.oiiiiiiiieiiiiiiiie e, 45

4.2 End-to-End Execution Time..........cccooiiiiiiiiiiinnnnn.. 47

4.3 ACCUTACY......oouvienternneeaneeinnaannnennnsoneesnnenngle iubanes 50

4.4 Confidence SCOTE........ouevtiieiiiiiiiiiei e, 53

4.5 Resource USae......vvvuuiinniiiiiiiiiiiiieeieiie e, 53

4.6 Data Transfer...........coooviiiiiiiiiiiiii e 54

5 Conclusion and DiSCUSSION.oueuuiuiitiiiii e eiaaenas 56
p.IPCTREETCN Y. 56

5.2 DISCUSSION. ... ettt ettt e e eeieeaenaaes 57

BT, L 58
RO, Ic.ccvennenneneennent .. i W T 64
Appendix A. Source Code —10OS Swift.................c.oeeei. 65

Appendix B. Source Code — Python Fast API App............. 87

Appendix C. Source Code —APIClient........................... 92

Appendix D. Source Code — Performance Stats API............ 110

Appendix E. Database.............c.coooviiiiiiiiiiiii 157

vii

Table of Contents (Continued)

Chapter Page

eras Image Classifier Training.. 161

ensorRT Model Conversion... 169
171

Appendix F. Sa
Appendix G.
Appendix H. Publication....................c.ocooiin

Biography..................

viii

List of Tables
Table Page
2.1 Related WOrKS.ovviiie i 14
2.2 Edge Device Information............cceeiiiiiiiiiiiiiiiiiii e, 16

2.3 Proposed System Evaluation Time Compared to Cloud-Based System... 17
2.4 Proposed System Execution Time Compared to Cloud-Based System... 18
2.5 Proposed System Top-1 and Top-3 Accuracy Compared to Cloud-Based
B 111 NN - - - 18
2.6 Bandwidth Usage CompariSOn.........ooueiuerrieneenneeeenneaneaneenneannns 18
2.7 Power Consumption and CPU Utilization by Edge Device (1000
111 (011 (61 P TP 19

2.8 Average Latency and Standard Deviation per Image by Edge Device

(1000 INFETENCES). ... vvt ettt et e eae e iae e e 20
3.1 EnvIronment SETUP.oueenteintitettit ettt ettt eieane e atenen 29
4.1 Inference TIME.ovuinuiniit it 46
4.2 End-to-End Execution Time..........cooiiiiiiiiiniiiiniiiiiiieee, 48
B N1 | v 50
4.4 Traning Results........ ... e 51
O a e e B S . WA W 52
4.6 Model Performance.cooeveiiuiiiiiiiiiii 52
4.7 Confidence SCOTE..........oueuuintiteeiit et eiaeaees 53
4.8 ReSOUICE USAZE. ... iuuiiiitiitt ittt et e aaeas 54

4.9 Data TranSter.o 54

Figure
2.1
2.2
23
24
2.5
2.6
2.7
2.8
29

2.10
2.11
Vo,
2.13
2.14
3.1
3.2
3.3
3.4
3.5

3.6

3.7

3.8
3.9

iX

List of Figures
Page
Edge Computing Paradigm....................oooiiiiiiiiiiiin 7
Apple Core ML pipeline with the Core ML logo in the middle...... 9
Create ML 10ZO0. .. vttt 10
User Interface of Create ML application on macOS Ventura........ 11
TensorFLowW [0Z0. . ..eoneii i 12
Keras LogO. . .ovueeiiii e 13
NVIDIA TensorRT LOZO.....couvviiiiiiiii i, 14
IoT Kakashi (Smart Scarecrow) System Overview................... 15
Deployment Environment Aware Learning (DEAL) Process for
CNN-based model.............ooiiiiiiiiiiiiiiiiee, 16
Animal Recognition Process OVerview.............ccvvuvvieenennnn.. 16
IoT system architecture for [oT camera trap system.................. 19
Mobile Application (Breast Detection Results)........................ 21
SWITE LOZO. ..ttt e 23
FastAPT LOO. ... oo 24
Conceptual Framework...............ooooiiiiiiiiiiiiii e, 26
Proposed Method............oooiiiiii e 28
Sample Data of Kaggle Cats VS Dogs Dataset........................ 32
Sample Data of Animal Faces-HQ Dataset..............c.oooeeuenen. 32
Steps to create an image classifier model using Create ML for 10S
(Edge Device Environment)............ccceeiiiiiiiiiiiinnennnnns. 33
Create ML dataset folder structure instruction........................ 34
Steps to create an image classifier model using TensorFlow and
Keras for Linux-based environment (for edge server and
DIEIGIRGE e Ml of T SR) SRR . . . T 36

Steps to bundling the Core ML model to an iOS Swift application.. 38
Activity Diagram of the i0OS Swift application........................ 39

Figure

3.10

3.11
3.12
3.13
4.1
4.2
43
4.4
4.5
4.6

4.7
4.8
4.9
4.10
4.11

4.12

4.13

List of Figures (Continued)

Steps to bundling the TensorRT model to a REST API web service

APPLICATION. ..ttt
Activity diagram of the API application...............................
Overview of Performance Evaluation System........................
Performance Analysis..........cooivuiiiiiiiiiiiii e
Inference Time COmMPAriSON.vuviuueinieiiiiaiaieaieaannnnn.
Histogram of the inference time results of the edge device.........
Histrogram of the inference time results of the edge server.........
Histogram of the inference time results of the cloud server.........
End-to-End Execution Time Comparison................ccevueenenn...
Histogram of the end-to-end execution time results of the edge

device environment (iPhone + Core ML)........................
Histogram of the end-to-end execution time results of the edge

server (NVIDIA GeForce RTX 3070 + TensorRT + LAN)....
Histogram of the end-to-end execution time results of the cloud

server (NVIDIA A10G + TensorRT + Internet)..................
Core ML Model Traning and Validation Accuracy....................
Keras Model Training and Validation Accuracy...........c..c........
Histogram of confidence score results.................coeieieinenn.n.
Histogram of file size of test images in resolution 256-by-256 px

SRGB IEC61966-2.1 JPEG.........cciiiiiiiiiiiiiiiinininii,
Histogram of file size of test images in resolution 512-by-512 px

SRGB IEC61966-2.1 JPEG..........cooiiiiiiiiiiiiiiiiinee

Page

40
40
41
44
46
46
47
47
48

49

49

49

51

51

53

55

55

Chapter 1

Introduction

1.1 Background

Image classification is the adoption of Deep Learning techniques to enable
computers to learn and analyze images automatically. It plays an important role in
connecting the computer with the physical world. It advances the development of new
knowledge, techniques, and methods in many areas such as agriculture [1,2,3],
industrial, manufacturing, security [4], smart things [4,5], healthcare [6,7,8], and retail
[9,10].

Image classification processes require significant processing power, and that
should be a specific processing unit, such as a sufficient GPU (Graphics Processing
Unit).

Most applications were designed to execute data processing on the cloud,
including the image classification process. Thus, this leads to the expensive
subscription cost for GPU instances or computer vision API on the public cloud, and
the cost will increase on demand. The network bandwidth is also needed for uploading
the image, which is larger than the text, even though the image was pre-processed by
resizing and compression. By using cloud computing to process, although cloud
computing is a high-availability cluster, the budget of the application owner may be
limited, so the resources that the application owner acquired may also be limited,
resulting in a slow computation process, or causing a bottleneck or interruption when
high-demand throughput occurs. And, in some use cases, the image should not be
uploaded to the internet because of privacy concerns.

With the emergence of Edge Computing, offloading the image classification
process from the cloud to the edge devices is a viable idea that mitigates the budget
needs, reduces cloud computing workloads, reduces network bandwidth, and privacy
oriented. Thus, resulting in lower running costs or lower subscription costs, and more
privacy for the end user.

Nowadays, there is various energy-efficient hardware that can be used as an

edge device. Examples of them are smartphones, tablets, and single-board computers.

Flagship or high-end devices integrated a GPU on the SoC (System on a Chip), which
is, by the provided technical specification, the number of GPU cores seems to have the
potential for processing image classification. For instance, the iPhone 12 [11] and
iPhone 12 Pro [12] series have 4 GPU cores, an iPad Pro 11 3" generation [13] has 8
GPU cores, and an Nvidia Jetson Orin Nano [14] has 1024 CUDA cores. The number
of cores in mobile devices tends to increase in future generations, as seen in the iPhone
13 Pro [15] and iPhone 14 Pro [16] series.

Even though the technical specifications of mobile devices reveal their
potential computing resources, the study of performance between processing on mobile
devices, single-board computers, and cloud environments is needed to reveal the
practical difference in terms of inference time, accuracy, network data transfer, and
resource utilization.

In this research, the performance of the image classification process on viable
devices was studied, and the practical performance was evaluated. The result will reveal
the future trends in using edge devices to perform image classification in software
architecture design.

The performance evaluation method was proposed. It consists of the
construction of edge computing and cloud computing environments. Image
Classification model training, optimization for each environment, deployment of the
predictive model to each environment, and result gathering and analysis.

The environments are separated into two categories (i.e., edge and cloud). For
edge computing environments, an Apple iPhone 15 Pro series [17] with an Apple A17
Pro SoC was chosen as a representative of edge devices to be evaluated, and a computer
with an NVIDIA GeForce RTX 3070 GPU [18] was chosen as a representative of edge
servers to be evaluated. For cloud computing environments, a public cloud GPU
instance, EC2 GS5.xlarge Instance, from Amazon Web Services (AWS) [19] with
NVIDIA A10G Tensor Core GPU [20] was chosen to be evaluated. The details of the
environments are explained in Chapter 3.3 Environment Setup.

The model training will be based on the deployment environment. For Apple
mobile devices, Apple Create ML [21,22] will be used for generating an image
classification model, and Apple Core ML [23,24] will be used for on-device

implementation. For Linux-based operating system environments (i.e., edge server and

GPU instance), TensorFlow [25,26,27] and Keras [28] will be used for generating an
image classification model, then the model will be converted to TensorRT [29] to run
on the environment.

The performance outcomes were generated by running test scripts repeatedly,
and the results and performance value metered by IDEs (Integrated Development
Environments) were gathered. Then, the results were statistically analyzed to

summarize the findings.

1.2 Objectives

1.2.1 To study the overview of image classification implementation on edge
and cloud environments.

1.2.2 To study, visualize, and analyze the result of the image classification

performance on edge and cloud environments.

1.3 Contributions

1.3.1 Overview of image classification implementation on edge and cloud
environments.

1.3.2 Performance results of image -classification on edge and cloud

environments.

1.4 Scope

1.4.1 Data for image classification model training and testing

Any labeled or classified photos

1.4.2 Technical

To study the practical way of implementing image classification
applications, the techniques below are applied.
1) Create ML [21,22] for image classifier model training on macOS and
Core ML [23,24] for running image classifier model deployment on i0S
2) TensorFlow [25,26,27] and Keras [28] for image classifier model
training on a Linux-based OS.

3) Sample of edge-cloud application software.

1.4.3 Hardware
1) Edge Device — A GPU-integrated smartphone.

2) Edge Server — A computer with an integrated or discrete GPU located

in the edge network.

3) Cloud Server — A computer with a discrete GPU located in a remote

network.

1.4.4 Computer Network

FTTX broadband or 5G cellular network connection

1.5 Research Questions

What is the practical difference between processing at the edge and the cloud
in terms of:

1) Inference Time

2) End-to-End Execution Time

3) Accuracy

4) Network Data Transfer

5) Resource Utilization

6) Confidence Score

1.6 Hypothesis
Processing image classification on edge devices or edge servers is faster than
sending an image over the internet to process on the cloud because of the elimination

or reduction of network delays, together with the power of GPUs on edge devices.

1.7 Definitions
1.7.1 Edge Computing

Edge Computing refers to the enabling technologies allowing
computation to be performed at the edge of the network, on downstream data on behalf

of cloud services, and upstream data on behalf of IoT services [30].

1.7.2 Graphics Processing Unit (GPU)

A Graphics Processing Unit (GPU) is a specialized electronic circuit
designed to manipulate and alter memory to accelerate the creation of images in a frame
buffer intended for output to a display device. GPUs are used in embedded systems,

mobile phones, personal computers, workstations, and game consoles [31].

1.7.3 System on a chip (SoC)

A system on a chip (SoC) is an integrated circuit that combines most or
all key components of a computer or electronic system onto a single microchip.
Typically, an SoC includes a central processing unit (CPU) with memory, input/output,
and data storage control functions, along with optional features like a graphics
processing unit (GPU), Wi-Fi connectivity, and radio frequency processing. This high
level of integration minimizes the need for separate, discrete components, thereby

enhancing power efficiency and simplifying device design. [32]

Chapter 2

Literature Review

Theories, concepts, and related works used as a principle of this research
have been grouped into five categories listed below.

2.1 Edge Computing

2.2 Image Classification

2.3 ML Kit and Related Libraries

2.4 Related Works

2.5 Related Theories

2.1 Edge Computing

2.1.1 Concept of Edge Computing

Shi et al. [30] described the concept of Edge Computing as the
enabling of technologies allowing computation to be performed at the edge of the
network. such as processing on a smartphone which is the edge between the body and
the cloud. For example, a smart phone is the edge between body things and cloud, a
gateway in a smart home is the edge between home things and cloud.

Edge can perform computing offloading, data storage, caching and
processing, as well as distribute requests and delivery services from cloud to user.

Shi et al. [30] also provided an illustration of the edge computing

paradigm as shown in Figure 2.1.

*f Data Producer
IR
[

Data Result equest

I
1 Computing offload

I . I Data caching/storage

Data processing
Edge * Request distribution
I Service delivery
| l loT management
| l Privacy protection
\ A
@ O &6 >
® H ¥ O
O = = [
(= K7

Data Producer/Consumer

Figure 2.1 Edge Computing Paradigm [30]

2.1.2 Use Cases of Edge Computing

Shi et al. [30] reveal that cloud offloading, video analytics, smart home,
smart city and collaborative edge could shine.

J. Chen and X. Ran. [33] proposed that computer vision, natural
language processing, network functions, the internet of things, virtual reality, and

augmented reality are examples of applications where deep learning on edge devices
is useful.

2.1.3 Benefits of Edge Computing

The benefits of Edge Computing mostly involve the reduction of cloud
computing workloads, the reduction of network bandwidth, which will save the cost

of operating the workload on the cloud.

2.2 Image Classification

Image classification is a computer vision task that involves assigning a label
or a category to an image based on its content [34]. The goal of image classification
is to teach a machine learning model to recognize and classify images accurately and
automatically.

Image classification typically involves a training phase, during which a deep
learning model is trained on a large dataset of labeled images. The model learns to
identify patterns and features in the images that are associated with different classes
or categories. For example, a model might learn to recognize the shape of a car, the
texture of fur, or the color of a flower.

Once the model is trained, it can be used to classify new, unseen images.
During the classification phase, the model takes an input image and produces a
probability distribution over the possible classes or categories. The class with the
highest probability is then assigned as the label for the image.

Image classification has many practical applications, including object
recognition, face detection, medical image analysis, and self-driving cars. It is a
fundamental task in computer vision and has been the subject of much research and

development in recent years.

2.3 ML Kit and Related Libraries
2.3.1 CoreML
Apple's Core ML [23,24] is a framework for developing machine
learning models and integrating them into 10S, macOS, watchOS, and tvOS
applications. It allows developers to easily build and deploy machine learning models
on Apple devices, taking advantage of the device's hardware acceleration to run

models quickly and efficiently.

'T’"

ML MODEL

Core ML model Core ML Your app

Figure 2.2 Apple Core ML pipeline with the Core ML logo in the middle

Core ML provides a simple and unified API for accessing pre-trained
machine learning models from popular machine learning libraries such as TensorFlow
and Keras, as well as custom models created using tools like Create ML. This allows
developers to quickly integrate machine learning capabilities into their apps without
having to worry about the underlying implementation details.

Core ML supports a wide range of machine learning tasks, including
image and text analysis, natural language processing, and even custom tasks through
the use of custom layers. It also includes features like model quantization and
compression, which allow models to be optimized for deployment on mobile devices
with limited resources.

Overall, Core ML makes it easier for developers to incorporate
machine learning into their apps, making it possible to build more powerful and

engaging experiences for users.

2.3.2 Create ML

Apple's Create ML [21,22] is a framework for developing custom
machine learning models for use in i0S, macOS, watchOS, and tvOS applications. It
is designed to be easy to use, even for developers without extensive experience in
machine learning.

Create ML provides a simple and intuitive interface for training
machine learning models using a variety of data types, including images, text, tabular

data, and more. It includes pre-built models for common tasks like image

10

classification and object detection, as well as the ability to create custom models using

a drag-and-drop interface.

Figure 2.3 Create ML logo

Create ML provides a simple and intuitive interface for training
machine learning models using a variety of data types, including images, text, tabular
data, and more. It includes pre-built models for common tasks like image
classification and object detection, as well as the ability to create custom models using
a drag-and-drop interface.

With Create ML, developers can quickly build and train models on
their own data sets, without the need for extensive knowledge of machine learning
algorithms or programming languages like Python. The framework also includes
features like automated machine learning, which can help developers find the best
model architecture and hyperparameters for their data set.

Once a model is trained in Create ML, it can be exported as a Core ML
model for use in 10S, macOS, watchOS, and tvOS applications. This integration with
Core ML allows developers to easily incorporate custom machine learning models
into their apps, taking advantage of the device's hardware acceleration for fast and
efficient inference.

Overall, Create ML makes it easier for developers to create and deploy
custom machine learning models, enabling them to build more intelligent and

engaging apps for Apple's platforms.

11

Settings Training Evaluation Preview Output

B GroceryClassifier Training Test ©
un 6, 2022 at 9:41 AM

Tost Accuracy

Correct

Incorrect

+ NewTest Result: Label: Prediction:

Correct (<] Any e
Test
Jun 6, 2022 at 9:41 AM
162 images were correctly classified N

© Completed 25 iterations

Figure 2.4 User Interface of Create ML application on macOS Ventura [21]

2.3.3 TensorFlow

TensorFlow [25,26,27] is an open-source framework for building and
deploying machine learning models. Developed by Google, it was initially released
in 2015 and has since become one of the most popular machine learning frameworks
used by developers and researchers worldwide.

TensorFlow allows users to build and train machine learning models
for a wide range of tasks, including image and speech recognition, natural language
processing, and more. It uses a data flow graph to represent the computations in a
model, allowing for efficient parallel processing and distributed computing.

One of the key features of TensorFlow is its flexibility. It allows users
to build models using a variety of programming languages, including Python, C++,
and Java, and supports a wide range of hardware, from mobile devices to high-
performance computing clusters. It also includes a vast library of pre-built models
and tools, including TensorFlow Hub, which provides access to a large collection of

pre-trained models.

12

TensorFlow also includes LiteRT [35] (formerly known as TensorFlow
Lite), which allows models to be deployed on mobile and embedded devices with
limited resources.

Overall, TensorFlow provides a powerful and flexible platform for
building and deploying machine learning models, and has become a key tool in the

machine learning community.

¢ Tensorklow

Figure 2.5 TensorFlow Logo

2.3.4 Keras

Keras [28] is an open-source high-level neural network API, written in
Python and capable of running on top of popular deep learning libraries such as
TensorFlow, Theano, and CNTK. It was developed with a focus on enabling fast
experimentation and prototyping of deep learning models.

Keras provides a simple and user-friendly interface for building and
training deep learning models, allowing developers to quickly prototype and iterate
on different architectures and hyperparameters. It supports a wide range of neural
network architectures, including convolutional networks, recurrent networks, and
combinations of the two.

One of the key features of Keras is its modularity, which allows users
to easily mix and match different layers, loss functions, and optimizers to build
custom models. It also includes a large library of pre-built models and tools, including
the Keras Applications module, which provides access to a collection of pre-trained
models.

Keras is widely used in both industry and academia, and has become
a popular choice for building deep learning models due to its ease of use, flexibility,

and extensive community support.

13

Overall, Keras provides a powerful and user-friendly platform for
building and training deep learning models, and has played a significant role in

making deep learning more accessible to a wider audience.

. Keras

Figure 2.6 Keras Logo

2.3.5 TensorRT

TensorRT [29] is a deep learning inference optimizer and runtime
library developed by NVIDIA. It is designed to improve the performance and
efficiency of deep learning inference on NVIDIA GPUs and other accelerators.

TensorRT works by optimizing the computation graph of a trained
deep learning model for execution on NVIDIA GPUs. It does this by performing a
variety of optimizations, including layer fusion, precision calibration, and kernel auto-
tuning, to reduce the memory footprint and computational workload of the model.

By optimizing the model for execution on NVIDIA GPUs, TensorRT
is able to significantly accelerate the inference process and improve the throughput
and latency of deep learning applications. It supports a wide range of deep learning
frameworks, including TensorFlow, PyTorch, and ONNX, and is compatible with
both cloud and edge deployments.

TensorRT is widely used in a variety of industries, including
automotive, healthcare, and finance, to accelerate and optimize deep learning
inference. It has become a key tool in the NVIDIA ecosystem and has helped to drive

the adoption of deep learning in industry and academia.

14

Overall, TensorRT provides a powerful and efficient platform for
optimizing and accelerating deep learning inference on NVIDIA GPUs, and has

become an essential tool for many deep learning applications.

 S— —_—

Figure 2.7 NVIDIA TensorRT Logo

2.4 Related Works
Table 2.1 show summarizes research related to the performance analysis,
comparison, evaluation, benchmarks, and applications of image classification on edge

computing.

Table 2.1 Related Works

No. Authors Title

1 N. Monburinon, et al. [1] | A Novel Hierarchical Edge Computing
Solution Based on Deep Learning for
Distributed Image Recognition in [oT

Systems

2 I. Zualkernan, et al. [2] An IoT System Using Deep Learning to
Classify Camera Trap Images on the Edge

15

Table 2.1 Related Works (Continued)

No. Authors Title
3 E. Charteros and Edge Computing for Having an Edge on Cancer
I. Koutsopoulos. [6] Treatment: A Mobile App for Breast Image
Analysis
4 S. R. Reza, et al. [36] Inference Performance = Comparison of
Convolutional Neural Networks on Edge Devices
5 A. Ignatov, et al. [37] Al Benchmark: All About Deep Learning on
Smartphones in 2019

N. Monburinon et al. [1] proposed the topic “A Novel Hierarchical Edge

Computing Solution Based on Deep Learning for Distributed Image Recognition in

[oT Systems”

. They proposed a system for detecting animals that intrude into the

agriculture field (Figure 2.8). They localized the training set for each geographical

area (Figure 2.9). Then, they deploy the trained model on the edge server (Figure 2.8

and Figure 2.10), which is a Raspberry Pi 3 Model B (Table 2.2).

The prediction results generated from the edge server are federated to the

higher-level edge server or to the cloud. The result is their proposed edge computing

system performs faster than cloud computing in most cases and has greater accuracy.

ervers (HLES or CLES)
....‘ I Frontend Backend |
| < ' Web Web
(Application Services, API |
Ordinary Users | | v Analyst &
/ Researchers

| PIR Sensor Raspberry Pi (GLES) 0
= g Recoanion
PI Camera

Animals

Detect animals

<, >Engine
L Things OS i (CNN)
i

and capture images

Process images and recognize
animal types

Figure 2.8 IoT Kakashi (Smart Scarecrow) System Overview [1].

16

Deploy trained model Optimize model for Trall?gangNN
On the Edge Devices Edge Devices Transfer Learning

Figure 2.9 Deployment Environment Aware Learning (DEAL) Process for CNN-
based model [1].

Transfer Location Match Location with i .
(Data to Cloud | [Animal Types }'Eocallze Training Set

T ~ == — —

Dectect motion || Capture anImage [Image Preprocess

L " - - e e’
N ~ B ~ * N
Transfer Information : Process Recognition Recognize Image
to Cloud Results > with CNN
N - . o S— o
Store Information P
for further analysis
S —

Figure 2.10 Animal Recognition Process Overview [1]

Table 2.2 Edge Device Information [1]

Raspberry Pi 3 Model B
CPU 1.2 GHz Quad-Core ARM Cortex A53
GPU Broadcom VideoCore IV (@ 400 MHz
Memory 1 GB LPDDR2-800 SDRAM
10/100 Mbps Ethernet
Network
802.11n Wireless LAN

17

Table 2.2 Edge Device Information [1] (Continued)

Raspberry Pi 3 Model B

OS Android Things 1.0

The results shown in Table 2.3 and Table 2.4 show that the researcher
proposed method have of 0.319 seconds as a minimum evaluation time of 0.319
seconds and 1.640 seconds as a maximum evaluation time whereas 0.723-1.284
seconds as a minimum time among cloud providers and 1.377-2.577 seconds as a
maximum time among cloud providers. The execution time of their proposed method
is 0.962 seconds as a minimum and 3.039 as a maximum whereas among cloud
providers, 2.147 is a minimum, and 8.446 is the lowest maximum. While their
proposed method is maintaining an accuracy of 90% in Top-1 accuracy and 96% in
Top-3 accuracy whereas general purpose image recognition APIs have the highest of
57% in Top-1 accuracy and 77% in Top-3 accuracy as shown in Table 2.5.

The results in Table 2.6 show that the researchers proposed model uses only
4.3 kb/s whereas at least about 70 kb/s for processing on the public cloud. The model
uses less bandwidth because it did not send the image data over the internet. And the
concern of using a low-power consumption device for processing image recognition
is eliminated in this scenario due to the results that show the execution time is

significantly less than sending an image over the internet to process on the cloud.

Table 2.3 Proposed System Evaluation Time Compared to Cloud-Based System [1]

Model Min. Evaluation Time Max. Evaluation Time
Proposed System 0.3190 1.6400
Google Vision 0.7233 1.3768
AWS Rekognition 1.2835 2.5770
Clarifai 0.9491 1.8757

Table 2.4 Proposed System Execution Time Compared to Cloud Based System [1]

18

Model Min. Execution Time Max. Execution Time
Proposed System 0.962 3.039
Google Vision 2.456 12.571
AWS Rekognition 2.596 8.446
Clarifai 2.147 8.803

Table 2.5 Proposed System Top-1 and Top-3 Accuracy Compared to Cloud-Based

System [1]
Model Top-1 accuracy Top-3 accuracy
Proposed System 0.9 0.96
Google Vision 0.57 0.77
AWS Rekognition 0 0.7
Clarifai 0.13 0.2

Table 2.6 Bandwidth Usage Comparison [1]

Model Bandwidth Usage (KiB/s)
Proposed System 4.3
Google Vision 71.8
AWS Rekognition 70.7
Clarifai 72.5

I. Zualkernan, et al. [2] proposed the topic “An IoT System Using Deep

Learning to Classify Camera Trap Images on the Edge”, they described it as “an IoT

architecture that uses deep learning on edge devices to convey animal classification

results to a mobile app using the LoRaWAN, a low-power wide area network™ (Figure

2.11). They review various applications on CNNs that can be used for animal image

classification. The models InceptionV3, MobileNetV2, ResNetl8, EfficientNetB1,

19

DenseNet121, Xception were evaluated. They also evaluate the model and hardware
power consumption and latency, their results show that in the model that utilizes GPU,
despite twice the power consumption, the inference time is significantly lower (0.276
seconds when utilizing GPU compared to >= 4.316 seconds when not utilizing GPU

on Nvidia Jetson Nano), as shown in Table 2.7 and Table 2.8.

AloT Edge Device

End Node Firebase Cloud
Database

LoRa .
Gateway A

8 ___intemet __ MV

/ | |

I \ @ "'j//

Mobile

1
]
:
1
| Application
ol o
1
U

Images ’ .

BuBlU|

. — — —

h

Figure 2.11 IoT system architecture for IoT camera trap system [2]

Table 2.7 Power Consumption and CPU Ultilization by Edge Device (1000 inferences)
[2]

Device Average Max Average Max CPU
(Model) Current Current CPU Util. Util. (%)
(mA) (mA) (“o0)
Raspberry Pi
p. /, 838.99 977 23.62 57.3
(TFLite)
Google Coral
) 1074.88 1140 50.41 56.8
(TFLite)
Jetson Nano
) 874.37 1057 34.85 60.6
(TFLite)

20

Table 2.7 Power Consumption and CPU Utilization by Edge Device (1000 inferences)

[2] (Continued)

Device Average Max Current | Average CPU | Max CPU
(Model) Current (mA) | (mA) Util. (%) Util. (%)
Jetson Nano

1665.21 2005 27.14 53.7
(TensorRT)

Table 2.8 Average Latency and Standard Deviation per Image by Edge Device (1000

inferences) [2]

Device (Model) Capture Pre-Process Inference Total
Time (s) Time (s) Time (s) Time (s)

RPI-TFLite 0.518 (0.014) | 0.011 (0.002) 2.835 3.365
(0.036) (0.039)

Coral-TFLite 0.013 (0.001) 0.014 2.739 2.765
(<0.000) (0.002) (0.002)

Nano-TFLite 0.001 0.006 4316 4.324
(<0.000) (<0.000) (0.026) (0.026)

Nano-TensorRT 0.002 0.006 0.276 0.283
(<0.000) (<0.000) (0.002) (0.002)

E. Charteros and 1. Koutsopoulos. [6] proposed a topic “Edge Computing

for Having an Edge on Cancer Treatment: A Mobile App for Breast Image Analysis”.

They created a mobile application prototype (Figure 2.12) that let the patient take a

photo of themselves to perform breast analysis in the app. Face detection was used

for removing the patient's face to ensure the patient’s privacy and a machine learnin
g p p p y g

model (MaskRCNN) was implemented inside the app to analyze the health of the

breast from taken photos. Their proposed system has 98% accuracy in breast

identification and the mask prediction finding correctly about 90-95% of the breast

surface in both cases. They evaluated the speed of their machine learning application

on a low-end mobile device (Huawei Y6 Prime) and a high-end mobile device

21

(Huawei Mate 20 Pro). They found that it took 20 seconds on the low-end mobile
device whereas on the high-end mobile device, took 12-14 seconds. They also
reported that energy consumption is medium when using camera and face detection,
and high when analyzing a breast image, based on the metrics provided by Android

Studio.

BreastAnalysisMaskRCNN

BreastAnalysisMaskRCNN BreastAnalysisMaskRCNN

Figure 2.12 Mobile Application (Breast Detection Results) [6]

S. R. Reza, et al. [36] evaluated the inference performance of several
popular pre-trained convolutional neural networks (CNN) models, namely MobileNet
V1, MobileNet V2 [32], and Inception V3, on three edge computing devices: NVIDIA
Jetson TX2, NVIDIA Jetson Nano, and Google Edge TPU. MobileNet V1 and
MobileNet V2 were found as candidate models for speed, while Inception V3 was
found to be more accurate.

A. Ignatov, et al. [37] published an article that contains tables representing
benchmarks of Android smartphones in the market in 2019. The benchmarks consist

22

of the inference time performance of MobileNet v2, Inception-ResNet, SRCNN,
VGG-19, and DPED.

2.5 Related Theories

2.5.1 Evaluating a machine learning model

It is important to evaluate a machine learning model to see how well
the model is. The techniques that will be used for observing and evaluating the model

created in this research are listed below.

2.5.1.1 Confusion Matrix

A confusion matrix is a table that is used to evaluate the
performance of a classification model. It shows the number of true positives, true
negatives, false positives, and false negatives, which can be used to calculate various
evaluation metrics such as precision, recall, and accuracy. [38,39]

1) True Positive is a type of accurate prediction where a model
predicted that an object belongs to a class, and it actually belongs to a class.

2) True Negative is a type of accurate prediction where a
model predicted that an object does not belong to a class, and it actually not belongs
to a class.

3) False Positive is a type of inaccurate prediction where a
model predicted that an object belongs to a class but actually not belongs to a class.

4) False Negative is a type of inaccurate prediction where a
model predicted that an object does not belong to a class but actually belongs to a

class.

2.5.1.2 Accuracy

Accuracy is the percentage of correct prediction, which can be

calculated by using the equation (1) below.

Correct Prediction
All Prediction

Accuracy =

(1)

23

2.5.1.3 Precision

Precision is a percentage of the model’s accuracy when

predicting positive samples, which can be calculated by using the equation (2) below.

. 4 True Positives
Precision = — — (2)
True Positives+False Positives

2.5.1.4 Recall

Recall is a percentage of the model’s ability to find all positive

samples, which can be calculated by the equation (3) below.

True Positives

Recall = 3)

True Positives+False Negatives

2.5.1.5 F1 Score

The F1 score is a metric that combines precision and recall to
provide a single measure of a model’s performance, represented in percentage.

A higher score indicates that the model is correctly identifying
positive samples while minimizing false samples.

The F1 score can be calculated by the simplified equation (4)

below.

2xPrecision*Recall

F1:

precisionsrecall (D)
2.6 Related Technologies

Swift [40] is a powerful and intuitive programming language
developed by Apple for building apps on Apple platforms such as i0OS, macOS,
watchOS, and tvOS.

24

Figure 2.13 Swift Logo

2.6.2 FastAPI
FastAPI [41] is a modern, high-performance web framework for
building APIs with Python 3.7+. It is designed to be fast, easy to use, and based on
standard Python type hints.

@ FastAPI

Figure 2.14 FastAPI Logo

Chapter 3
Methodology

Following a literature review and technology trends, it was found that edge
devices, especially smartphones, and edge servers have improved processing power
over the years, enabling the feasibility of the image classification process. Additionally,
offloading the application to process at the edge significantly reduces or eliminates the
network delay and may increase privacy for the end user. The researcher then
questioned whether performing image classification on edge devices or edge servers
may be faster than sending data over the internet to the cloud.

Therefore, the researcher proposed experimental research to study and
evaluate the performance and analyze the results using statistical methods, as outlined
below.

3.1 Conceptual Framework

3.2 Proposed Method

3.3 Environment Setup

3.4 Dataset Preparation

3.5 Create Image Classifier

3.6 Applying Image Classifier

3.7 Result Gathering

3.8 Result Analysis

3.1 Conceptual Framework
The conceptual framework in Figure 3.1 shows the variables and the design of
this experimental research. The conceptual framework consists of independent

variables, dependent variables, and moderating variables as described below.

26

Independent Variable

Moderating Variable

Processing
ML Framework Environment
Hardware —_—

Moderating Variable

A\ 4

Performance — Dataset
|

Dependent Variable Dependent Variable

Accuracy Resource Usage

Dependent Variable Dependent Variable

~

Inference Time Data Transfer

Dependent Variable Dependent Variable

Execution Time ~— -~ Confident Score

Figure 3.1 Conceptual Framework

3.1.1 Independent Variable

There is only one independent variable studied in this research, i.e., the
processing environment. The selected values that will be evaluated in this research are

Edge Device, Edge Server, and Cloud Server.

27

3.1.2 Dependent Variable

There are six dependent variables observed in this research topic, i.e.,
Accuracy, Inference Time, End-to-End Execution Time, Resource Usage, Data Transfer,
and Confident Score. The dependent variables will be used to conclude the findings and

provide an answer to the research questions and hypothesis.

3.1.3 Moderating Variables

There are three moderating variables that will influence the outcome,
i.e., ML Framework, Hardware, and Network. The processing environment will be

moderated by these variables.

3.1.4 Control Variables

There are three moderating variables that will influence the outcome,
i.e., ML Framework, Hardware, and Network. The processing environment will be

moderated by these variables.

3.2 Proposed Method

The proposed method shown in Figure 3.2 consists of 6 steps listed below. The
details of each step are described in Sections 3.3 to 3.8.

1) Environment Setup

2) Dataset Preparation

3) Create Image Classifier

4) Applying Image Classifier

5) Result Gathering

6) Result Analysis

28

Environment Setup

Dataset Preparation

Create Image Classifier

Apply Image Classifier

Result Gathering

Result Analysis

Figure 3.2 Proposed Method

3.3 Environment Setup

To test the hypothesis, three environments were set up as shown in Table 3.1.
iPhone 15 Pro series [17] with an Apple A17 Pro SoC was selected to represent an edge
device, A computer with a discrete GPU, Nvidia GeForce RTX 3070 [18], was selected
to represent an edge server. A public cloud GPU instance (virtual machine with GPU),
EC2 G5.xlarge Instance, from Amazon Web Services (AWS) [19] with an NVIDIA
A10G Tensor Core GPU [20] was selected to represent a cloud GPU. Three primary

criteria for each environment representative selection are listed below.

29

1) The device must have a GPU that has sufficient processing power according

to the official technical specification and literature review. The GPU is required to

ensure the speed and efficiency of the process.

2) Popularity

3) Affordability

Table 3.1 Environment Setup

Environment
Component
Edge Device Edge Server Cloud Server
iPhone 15 Pro AWS EC2 G5
Hardware / Device) Personal Computer
series g5.xlarge
Intel Core 15-
Processor / SoC Apple A17 Pro AMD EPYC 7R32
12400F
2 Performance
CPU Cores / 6 Cores,
Cores 4 vCPU
vCPU) 12 Threads
4 Efficiency Cores
Memory 8 GB Unified 16 GB 16 GB
Apple A17 Pro NVIDIA GeForce
GPU NVIDIA A10G
6 GPU Cores RTX 3070
GPU Memory 8 GB Unified 8 GB 24 GB
_ ‘ Ubuntu Linux Ubuntu Linux
Operating System 10S 17
24.04 LTS 22.04 LTS
Application Swift Python (FastAPI) | Python (FastAPI)
ML Runtime CoreML TensorRT TensorRT
Network Not Required LAN - Ethernet Internet - FTTx

3.3.1 Edge Device Environment

This environment is represented by a popular, well-known, and widely

used flagship smartphone in the market, the Apple iPhone 15 Pro series, which comes

30

with an Apple A17 Pro System-on-Chip with 2 performance cores and 4 efficiency
cores, 8 GB of Unified Memory, and 6 GPU cores. According to its specs, it found that
there is a potential processing power to process image classification.

Additionally, Apple has an ecosystem for machine learning called
CoreML, which is a proprietary optimization of the execution of machine learning on
Apple Silicon devices. Thus, CoreML was selected as an ML runtime for this
environment.

The image classification application for this environment will be an
application developed using Swift to run the CoreML image classifier model. No

network is required to classify an image.

3.3.2 Edge Server Environment

This environment is represented by a personal computer that has
hardware specs that are viable for processing image classification. It comes with
NVIDIA GeForce RTX 3070, a mid-range and affordable price GPU, together with
Intel Core 15-12400F, a mid-range, popular, and affordable price GPU. The RTX 3070
comes with 8 GB of GDDR6 256-bit memory, 448 GB/s memory bandwidth, 5,888
CUDA Cores, and 184 Tensor Cores. The Intel Core 15 CPU comes with 6 cores, 12
threads (Hyperthreading enabled), 2.5 GHz base clock speed, 4.4 GHz Turbo Boost
clock speed, 16 GB of RAM, and up to 1 Gbps of network bandwidth.

Additionally, NVIDIA has TensorRT, which is a proprietary
optimization for running a machine learning model. Thus, TensorRT was selected as an
ML runtime for this environment.

The image classification application for this environment will be an API
application developed using FastAPI to classify an image using the TensorRT image
classifier model. An API client will be run on a different machine, but within the same
network. A Local Area Network (LAN) connection and Ethernet are required for this
environment because edge computing requires processing to be executed at the same
network or the closest location to the user. In this case, the LAN connects the API

application and the API client (which acts as a user).

31

3.3.3 Cloud Computing Environment

This environment is represented by an affordable cloud GPU instance or
a virtual machine from AWS (Amazon Web Services), a G5.xlarge instance type,
launched in the Tokyo region. It comes with an NVIDIA A10G with 24 GB GPU
memory, 4 virtual CPUs of AMD EPYC 7R32, 16 GB of RAM, and up to 10 Gbps of
network bandwidth.

TensorRT was selected as an ML runtime for this environment because
of the proprietary optimization for running a machine learning model with TensorRT.

The image classification application for this environment will be an API
application developed using FastAPI to classify an image using the TensorRT image
classifier model. An API client will run on a different machine and network. An internet
connection is required to simulate cloud computing and connect the API client and the

API application.

3.4 Dataset Preparation

In this research, two datasets featuring images of dogs and cats were used, one
for training and validation and one for testing.

The first dataset is the Kaggle: Cats VS Dogs dataset from Microsoft and
PetFinder.com. It is used for training and validation. It contains 12,491 images of cats
and 12,470 images of dogs. This dataset was chosen for training and validation because
its photo consists of mixed backgrounds, postures, and image sizes. It also has plenty
of images for training and validation. The sample data of this dataset is shown in Figure
B3

The second dataset is the Animal Faces-HQ (AFHQ) dataset. It is used for
testing. It consists of high-quality images. The images are 512-by-512 pixels in
resolution. Images of cats and dogs in the training subset were chosen. Each class
contains about 5,000 images. This dataset was chosen because there was a high number
of photos to simulate and gain a stable statistic, and its quality is consistently good. The

sample data of this dataset is shown in Figure 3.4.

32

Figure 3.4 Sample Data of Animal Faces-HQ Dataset

3.5 Create Image Classifier
The model varies according to the environment setup. Core ML was used in
the edge environment, while TensorRT was used in the cloud environment because of

the proprietary optimization of hardware and ML framework.

3.5.1 Create an image classifier model for an edge device

This section describes the procedure to create an image classifier model
for the edge device environment. macOS is required to run Create ML. The steps are
listed below and represented in a flow as shown in Figure 3.5.

1) Split the images prepared in Section 3.4 into two sets:

e Training Set — A set for training data
e Testing Set — A set for testing
2) For each set, store classified images in the sub-folders, the sub-folder
name will be the label of the classified images. The example is shown in Figure
3.6.

3) Install Xcode from App Store

4) Create a new Create ML project, then drag the folder of the set of

images and drop them on Training, Validation, and Testing.

5) Configure training properties as follows:

e Validation Data: Automatic (Split from training data)

33

e Target Iteration:
e Augmentation: e
6) Start training by on “Train”.
7) Observe the outy hine Learning.

8) Export the trair 2 .mlmodel file.

Divide the image data prepsz e sets (Training, Testing, Validation)

A

sub-folder

?s

Install Xcode from Ap "

Start training by clicking on “Train”

Device Environmer

34

Create a parent folder for your images e.qg.
My Data. Inside My Data create a folder for
each group e.g. Dog, Cat. Place the images
for each group into the matching folder.
Choose or drag and drop My Data here.

Figure 3.6 Create ML dataset folder structure instruction

35

3.5.2 Create an image classifier model for edge server and cloud server

This section describes the procedure to create an image classifier model
for the Linux-based environment (for edge server and cloud server). The steps are listed
below and represented in a flow as shown in Figure 3.7.

1) Divide the image data prepared in Section 3.4 into two sets:

e Training Set — A set for training data
e Testing Set — A set for testing

2) For each set, store classified images in sub-folders, the sub-folder
name will be the label of the classified images.

3) Create a Python project.
4) Import TensorFlow libraries.
5) Configure the training properties as follows:
e Target Iteration: 50
e Early Stop Patient: 8
e Validation Split Rate: 5%
e Augmentations
o Random Flip
= Horizontal
o Random Rotation: 0.1
6) Load Dataset
7) Create the model.
8) Train the model.
9) Visualize and observe the training results.

10) Convert the trained model into a TensorRT model.

36

Divide the image data prepare in Section 3.4 into three sets (Training, Testing, Validation)

For each set - Store clas sub-folders, label the sub-folder

Create the model

Figure 3.7 Steps to create an image ier model using TensorFlow and Keras for

Linux-based environment (for edge server and cloud server)

37

3.6 Apply Image Classifier

3.6.1 Apply the image classifier model for an edge device

This section described the procedure for bundling the exported Core ML
model from Section 3.5.1 to a Swift application for iOS. macOS is required to use
Xcode for building a Swift application. The steps are described below and represented
in Figure 3.8.

The application lets the user choose a photo album that contains the
testing dataset. After the user chooses a photo album, all the photos or images in the
album and an output handler function are passed to the Core ML model to infer and
handle the prediction results. The activity or flow of the iOS Swift application is shown
in Figure 3.9.

1) Create an Xcode Project.

2) Import .mlmodel file as an asset of the project.

3) Compose the code for displaying the user interface

4) Create a programming function that listens to the gesture events and
accepts an image as input for classification;

5) Make the function call to the Core ML model.

6) Retrieve the list of predictions.

7) Format and store the output.

38

39

User

Choose
Album

ContentView

Start Has Photo? F End
T
Load Image Update View State
CoreML Model Prediction Handler
Classify Logging Result Processing

Figure 3.9 Activity diagram of the 10S Swift application

3.6.2 Apply the image classifier model for edge server and cloud server

This section described the procedure for bundling the exported
TensorRT model from Section 3.5.2 to a REST API web service application. The
creation steps are described below and represented in a flow as shown in Figure 3.10.

The application receives the image uploaded by a user and passes it to
the TensorRT model to infer and return the prediction results. The activity or flow of
the API application is shown in Figure 3.11.

1) Create a REST API web service application project.

2) Import the model.

3) Create a function to provide the REST API that accepts an image as
input for classification.

4) Make the function call to the TensorRT model.

5) Retrieve the list of output.

6) Format and store the output.

40

Create a REST API) service application project.

Create a function to provide

s an image as input for classification.

Retrieve the list of prec

o bundling the TensorRT model to

41

3.7 Result Gathering

The results of inference time, end-to-end execution time, testing accuracy, and
confidence score were gathered by a performance evaluation system represented in
Figure 3.12, the resource usage data were obtained through various monitoring tools,
and the data transfer results were derived from statistical calculations based on the file

sizes of the images in the dataset.

Local Machine
(o) % —
Image Image Prediction —
E 4) O FastAPI NG
</ > Prediction \ I Prediction Prediction
API Client Internet API Application TensorRT Model
Local Machine
(oo, — —
Image - Image Prediction —
g pER— O FastAP| E =
</ > Prediction TN Prediction Predicti
4
Image API Client API Application TensorRT Model
|Edge Device
Prediction
iOS Application CoreML Model

Figure 3.12 Overview of Performance Evaluation System

3.7.1 Inference Time

Inference Time is the duration when the image classifier begins
classifying the image and ends when the results are returned.

For the edge environment, a timestamp was captured after an image was
loaded and before passing to the classify function, and another timestamp was captured
after the model predicted and finished handling the results. Then, the difference
between the two captured timestamps was calculated and converted to milliseconds.

For the cloud environment, a timestamp was captured once the API

application received the uploaded image, and another timestamp was captured once the

42

model returned the prediction results. Then, the difference between the two captured
timestamps was calculated and converted to milliseconds.
The inference time of each image classification will be stored in the

database for statistical analysis.

3.7.2 End-to-End Execution Time

End-to-end execution Time is the duration when the system receives the
user’s input image, passes it to the image classifier to classify, waits for the prediction
returns, and ends. This includes the network delay, if applicable.

For the edge device environment, a timestamp was captured once the
image began to load, and another timestamp was captured once the results were printed.
The difference between the two captured timestamps was calculated and converted to
milliseconds.

For the cloud environment, an API client was developed by using Java
version 17 (Amazon Corretto 17 aarch64) to run the test. The client invokes the API by
making HTTP requests to the API application. This approach simulates the real-world
application that submits data to process on the remote server. A timestamp was captured
once the API client executed an HTTP request, and another timestamp was captured
once the API client received an HTTP response that contained the prediction results.
Then, the difference of the two captured timestamps was calculated and converted to
milliseconds. All of the images were resized from 512-by-512 pixels to 256-by-256
pixels before being uploaded to the cloud.

3.7.3 Accuracy

The accuracy results include training, validation, testing accuracy,
confusion matrix, and model performance. Training accuracy and validation accuracy
were obtained from the model training results trained with the training and validation
dataset (i.e. Kaggle: Cat VS Dog). Testing accuracy was obtained from the performance
evaluation system in Figure 3.12 using the testing dataset (i.e. Animal Faces-HQ). The
Confusion matrix was calculated from the accuracy. Model performance including

Precision, Recall, and F1-Score was calculated from the accuracy and confusion matrix.

43

3.7.4 Confidence Score

The confidence score is a factor in the prediction result describing the

degree of confidence of the prediction. It returns with each prediction result.

3.7.5 Resource Usage

Resource usage was gathered by utilizing a range of monitoring tools
across different platforms: on the Edge Device, Xcode was utilized to monitor resource
consumption, including CPU utilization, memory usage, and energy impact during the
execution of image classification in real-time. For the Edge Server and Cloud Server,
htop and Cockpit were utilized to monitor system performance, including CPU load,
and memory usage in real-time. Additionally, nvidia-smi was utilized to track GPU
performance, providing detailed statistics on GPU usage, and memory allocation in

real-time.

3.7.6 Data Transfer

File size of images in the Animal Faces-HQ dataset will be used. The

HTTP header is excluded.

3.8 Result Analysis

Results gathered from Section 3.7 will be analyzed and visualized in
appropriate charts and tables. Figure 3.13 represents the overview of performance
analysis.

Inference Time, End-to-End Execution Time, Confidence Score, and Data
Transfer will be analyzed statistically to find the minimum, average (mean), maximum,
and standard deviation values.

Accuracy will be calculated and visualized using charts and tables. Resource

usage of each environment will be compared in a table

Inference Time

End-to-End
Execution Time

Confidence Score Accuracy Resource Usage

Figure 3.13 Performance Analysis

44

Data Transfer

Chapter 4
Results

The gathered results will be analyzed and visualized in appropriate charts and
tables. The results will be presented as follows:

4.1 Inference Time

4.2 End-to-End Execution Time

4.3 Accuracy

4.4 Confidence Score

4.5 Resource Usage

4.6 Data Transfer

4.1 Inference Time

Table 4.1 represents the minimum, average, maximum, and standard deviation
of the inference time of image classification on the edge device, edge server, and cloud
server, measured in milliseconds; lower is better.

In Table 4.1, it was found that the minimum inference time of the edge device
is 5.02 milliseconds, the edge server is 1.76 milliseconds, and the cloud server is 2.32
milliseconds. The average inference time of the edge device is 16.30 milliseconds, the
edge server is 3.51 milliseconds, and the cloud server is 3.15 milliseconds. The
maximum inference time of the edge device is 1,175.30 milliseconds, the edge server
1s 9.52 milliseconds, and the cloud server is 131.63 milliseconds. The standard
deviation of the inference time of the edge device is 11.74 milliseconds, the edge server
1s 1.31 milliseconds, and the cloud server is 1.43 milliseconds.

Figure 4.1. represents the comparison chart of inference time between the edge
device, edge server, and cloud server. The histograms of each environment’s inference

time results are shown in Figures 4.2 to 4.4.

Table 4.1. Inference Time

Inference Time Results (milliseconds — lower is better)
Environment

Min Average Max S.D.
Edge Device 5.02 ms 16.30 ms 1,175.30 ms 11.74 ms
Edge Server 1.76 ms 3.51 ms 9.52 ms 1.31 ms
Cloud Server 2.32 ms 3.15ms 131.63 ms 1.43 ms

Inference Time Comparison (milliseconds - lower is better)

Edge Device

Edge Server L

Cloud Server

—_

10 100 1000 10000

= Min mAverage M Max

Figure 4.1 Inference Time Comparison

0 = - . el s |

Figure 4.2 Histogram of the inference time results of the edge device

47

700 A

600 -

500 -

400 1

300 A

200 -

100 A

T T T T T
10 15 20 25 30

Figure 4.3 Histogram of the inference time results of the edge server

1600 -

1400 -

1200 -

1000 -

Figure 4.4 Histogram of the inference time results of the cloud server

4.2 End-to-End Execution Time

Table 4.2 represents the minimum, average, maximum, and standard deviation
of the end-to-end execution time of image classification on the edge device, edge server,
and cloud server, measured in milliseconds; lower is better.

In Table 4.2, it was found that the minimum end-to-end execution time of the
edge device is 5.05 milliseconds, the edge server is 11 milliseconds, and the cloud
server is 197 milliseconds. The average end-to-end execution time of the edge device
is 16.47 milliseconds, the edge server is 28.23 milliseconds, and the cloud server is
280.54 milliseconds. The maximum end-to-end execution time of the edge device is
1,175.35 milliseconds, the edge server is 98 milliseconds, and the cloud server is 493

milliseconds. The standard deviation of the end-to-end execution time of the edge

48

device is 11.75 milliseconds, the edge server is 8.17 milliseconds, and the cloud server
is 47.88 milliseconds.

Figure 4.5. represents the comparison chart of end-to-end execution time
between the edge device, edge server, and cloud server. The histograms of each

environment’s inference time results are shown in Figures 4.6 to 4.8.

Table 4.2. End-to-End Execution Time

End-to-End Execution Time Results
Environment (milliseconds — lower is better)
Min Average Max S.D.
Edge Device 5.05 ms 16.47 ms 1,175.35 ms 11.75 ms
Edge Server 11 ms 28.23 ms 98 ms 8.17 ms
Cloud Server 197 ms 280.54 ms 493 ms 47.88 ms

End-to-End Execution Time Comparison (milliseconds - lower is better)

Edge Device

Edge Server

Cloud Server

w

—_

10 100 1000 10000

Min mAverage mMax

Figure 4.5. End-to-End Execution Time Comparison

49

5000 A

4000 -

3000 -

2000 A

1000 A

Figure 4.6 Histogram of the end-to-end execution time results of the edge device

environment (iPhone + Core ML)

500 4

400

2004

100

Figure 4.7 Histogram of the end-to-end execution time results of the edge server

(NVIDIA GeForce RTX 3070 + TensorRT + LAN)

100 A

80

60

40 1

201

Figure 4.8 Histogram of the end-to-end execution time results of the cloud server

(NVIDIA A10G + TensorRT + Internet)

50

Even though the standard deviation (S.D.) of both inference time and end-to-
end execution time are higher, The histogram shows that the end-to-end execution time
of the edge device environment is the most stable and predictable, followed by the edge
server environment, and the cloud environment. The reason that S.D. of the edge device
environment is higher than the edge server and cloud environment and not going the
same direction as the histogram is because the edge device environment has a maximum

record that was an outline.

4.3 Accuracy

Table 4.3 shows the training, validation, and testing accuracy of both image
classifier models. In the table, it was found that Edge Device has 99% training accuracy,
98.4 validation accuracy, and 99.75% testing accuracy, Edge Server has 97.7% training
accuracy, 96.7% validation accuracy, and 98.27% testing accuracy, and Cloud Server

has 97.7% training accuracy, 96.7% validation accuracy, and 95.46% testing accuracy.

Table 4.3. Accuracy

Accuracy (Percentage)
ML Environment
Training Validation Testing
Core ML 99.0% 98.4% 99.74%
Keras 97.7% 96.7% 98.27%

Table 4.4 shows the maximum iteration configuration of the Core ML and
Keras image classifier models and the convergence iteration. Training in Core ML was
configured to 25 max iterations but the model converged at iteration 11 as visualized in
Figure 4.9. Training in Keras was configured to 50 max iterations, and the early stop
patience was configured to observe for 8 continuously unimproved iterations, the model

converged at iteration 34 as visualized in Figure 4.10.

51

Table 4.4 Training Results

Iterations / Epochs
ML Framework
Maximum Convergence
Core ML 25 11
Keras 50 34
® Training Accuracy ® Validation Accuracy
99.0 % 98.4%
Iteration 11
100 ﬂ
80
60
40
20
0
Accuracy Iterations 25

Figure 4.9. Core ML Model Training and Validation Accuracy

Model Accuracy

—— Training /_/’_’_/___,__,s—’v——
E Validation < /\‘ \/ /\/\

0.9 1 /\ B

0.8 A

1.0 A

0.7 -

]

T
0 10 20 30 40
Iteration

Accuracy
_
=

Figure 4.10. Keras Model Training and Validation Accuracy

52

Table 4.5 shows the confusion matrix of the Core ML model tested on the edge
device, the Keras model converted to TensorRT tested on the edge server, and the Keras

model converted to TensorRT tested on the cloud server.

Table 4.5. Confusion Matrix

Predicted Class
Actual Class Total
Dog Cat
Edge Device — Core ML
Dog 4718 21 4739
Cat 4 5148 5153
Edge Server and Cloud Server — Keras — TensorRT
Dog 4600 139 4739
Cat 32 5121 5153

Table 4.6 shows the precision, recall, and Fl-score calculated from the

confusion matrix. In the table, it was found that Precision for

Table 4.6. Model Performance

Model Performance

Actual Class
Precision Recall F1-Score

Edge Device — Core ML

Dog 99.8% 100% 0.999

Cat 100% 100% 1

Edge Server and Cloud Server — Keras — TensorRT

Dog 99.3% 97.1% 0.982

Cat 97.4% 99.4% 0.984

53

4.4 Confidence Score

Table 4.7 represents the minimum, average, maximum, and standard deviation
of the confidence score of the inferences. It was found that the edge device has the
lowest standard deviation and highest average. The minimum confidence score is
around 50% across all environments. The histogram of confidence score results is

shown in Figure 4.11.

Table 4.7. Confidence Score Stats

Confidence Score Stats (Percentage)
Environment
Min Average Max S.D.
Core ML 50.34% 99.9% 100% 1.67%
Keras 50.01% 98.98% 100% 5.16%

104 4

10°

102

50 60 70

Figure 4.11. Histogram of confidence score results

4.5 Resource Usage

Table 4.8 shows the resource usage of image classification on the edge device,
edge server, and cloud server. On the edge device, 14% to 17% of CPU was utilized,
about 100 MB to 400 MB of unified memory was utilized, and it has a high to very high
energy impact. On the edge server, an average of 1% of 12 vCPU was utilized, 5.74 GB
memory was utilized, 5,328 MB of GPU memory was utilized, and 42 watts of energy

54

was used. On the cloud server, about 8% to 13% of 4 vCPU was utilized, 8.98 GB of
memory was utilized, and 12,283 MB of GPU memory was utilized.

Table 4.8. Resource Usage

Usage
Resource
Edge Device Edge Server Cloud Server

CPU 14 ~17% 1~3% of 12 vCPU 8~13% of 4 vCPU
Memory 100 ~ 400 MB 5.74 GB 8.96 GB
GPU Memory Unified 5,328 MB 12,283 MB
Energy Impact) i

High ~ Very High 42 Watts 65 Watts
/ Usage

4.6 Data Transfer

The data transfer was statistically measured by the size of the images used for
testing (the Animal Faces-HQ dataset) but did not include the HTTP payload and other
overheads. The images uploaded to the cloud are high-quality JPEGs resized to 256-
by-256 pixels, but the original size was 512-by-512 pixels. The color profile is SRGB
IEC61966-2.1.

Table 4.9 shows the minimum, average, maximum, and standard deviation of
the size of the images of the Animal Faces-HQ dataset. The histograms of the size of

the images are shown in Figure 4.12 and Figure 4.13.

Table 4.9. Data Transfer

Image Size (Kilobytes)
Resolution
Min Average Max S.D.
256 x 256 3.49 13.74 32.46 3.42

512 x 512 13.95 42.32 112.68 12.05

55

5000 4

4000 -

3000 4

2000 4

1000 -

T T T T
40 60 80 100

Figure 4.12. Histogram of file size of test images in resolution 256-by-256 px sRGB
IEC61966-2.1 JPEG

1750 A

1500 -

1250

1000 4

750 A

500

2501

T
100

Figure 4.13. Histogram of file size of test images in resolution 512-by-512 px sRGB
IEC61966-2.1 JPEG

Chapter 5

Conclusion and Discussion

The research study on performance analysis of image classification
between Edge and Cloud Computing presented the following conclusion as outlined
below.

5.1 Conclusion

5.2 Discussion

5.1 Conclusion

In this work, the researcher simulated the environments and application of
image classification on edge and cloud computing based on hardware, ML framework,
and network to evaluate and analyze the performance including inference time, end-to-
end execution time, accuracy, confidence score, resource usage, and data transfer.

It was found that inferences on the cloud were done faster compared to at the
edge. However, when considering the end-to-end execution time, the network delays
were significantly affecting the end-to-end execution time of image classification. In
our case, the distance between the application and the cloud has a significant impact on
the propagation delay, which leads to higher execution delay in the cloud environment.
The cloud GPU instance was running in Tokyo while the application was running in
Bangkok. The network delay measured by the ping test was 100 (£1) milliseconds. Thus,
executing image classification at the edge is significantly faster. The size of data
uploaded to the cloud has no significant impact on high-speed internet connections such
as FTTx, broadband, and 4G/5G cellular networks (without a Fair-Usage Policy or a
bandwidth limit policy applied).

The accuracy of the image classifier model created using CoreML is slightly
greater than the model created using Keras/TensorFlow. Based on testing, CoreML has
99.75% accuracy, and Keras/TensorFlow has 95.46%. The average confidence score of
both models was 99.9% and 98.0%, respectively. This is because CoreML works best
with images of real-world objects since it has an image feature extractor pre-trained by

millions of images, and our datasets are also composed of common real-world objects.

57

5.2 Discussion

Offloading image classification to the edge eliminates the network delays
required for federating data to process on the cloud (or the remote server). This makes
image classification faster, which is impactful for time-critical applications. It also
reduces cloud resources and subscription costs.

Even though the cloud is close to the edge, for instance, if the cloud and the
edge were placed in the same city and connected via FTTX, the network propagation
delay might range from 1 to 10 ms, leading to an insignificant difference of end-to-end
execution time between the edge and the cloud. However, offloading image
classification to the edge offers the benefit of cloud resource reduction while still
maintaining the application's speed and experience.

When considering offloading the image classification to the edge, the
performance and availability of the edge devices, the scenarios, and the use cases must
be considered.

Besides the execution speed, the model accuracy must also be considered. Our
experiment dataset was controlled by real-world dog and cat images, so CoreML has
an advantage. However, the model accuracy must be re-evaluated every time the dataset
changes.

Inference time and end-to-end execution time have a major impact on the
speed of the image classification system or application and on user experiences.
Accuracy impacts the correctness of prediction. The confidence score could be used as
a threshold in the application to display the prediction label confidently. Resource usage
shows how much resource the image classification consumed, including CPU, memory,
and energy, which will be related to the power consumption. Data transfer impacts how

much network bandwidth will be used.

\ulag
a 97,}

O
L e
6 References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

59

References

N. Monburinon et al., “A novel hierarchical edge computing solution based on
deep learning for distributed image recognition in IoT systems,” 2019 4th
International Conference on Information Technology (InCIT), Bangkok, Thailand,
October 24-25, 2019, pp. 294-299, doi: 10.1109/INCIT.2019.8912138.

I. Zualkerman et al., “An IoT system using deep learning to classify camera trap
images on the edge,” Computers 2022, vol.11, no.1, pp. 13, January 2022, doi:
10.3390/computers11010013.

A. Olsen et al., “DeepWeeds: A multiclass weed species image dataset for Deep
Learning,” Scientific Reports, vol. 9, no. 2058, pp. 1-12, February 2019, doi:
10.1038/s41598-018-38343-3.

G. P. A. Stalin and S. Anand, “Intelligent smart home security system: A deep
learning approach,” 2022 IEEE 10th Region 10 Humanitarian Iechnology
Conference (R10-HTC), Hyderabad, India, September 16-18, 2022, pp. 438-444,
doi: 10.1109/R10-HTC54060.2022.9929516.

S. Khan et al., “Pedestrian traffic lights classification using transfer learning in
smart city application,” 2021 13th International Conference on Communication
Software and Networks (ICCSN), Chongqing, China, June 4-7, 2021, pp. 352-356,
doi: 10.1109/ICCSN52437.2021.9463615.

E. Charteros and I. Koutsopoulos, “Edge computing for having an edge on cancer
treatment: A mobile app for breast image analysis,” 2020 IEEE International
Conference on Communications Workshops (ICC Workshops), Dublin, Ireland,
June 7-11, 2020, pp. 1-6, doi: 10.1109/ICCWorkshops49005.2020.9145219.

K. Muhammad et al., “Deep learning for multigrade brain tumor classification in
smart healthcare systems: A prospective survey,” in [EEE Transactions on Neural
Networks and Learning Systems, vol. 32, no. 2, pp. 507-522, February 2021, doi:
10.1109/TNNLS.2020.2995800.

60

[8] K. Iqtidar et al., “Image pattern analysis towards classification of skin cancer
through dermoscopic images,” 2020 First International Conference of Smart
Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia,
November 3-5, 2020, pp. 208-213, doi: 10.1109/SMART-TECH49988.2020.
00055.

[9] P. Rujakom et al., “Retail management on mobile application using product
classification,” 2022 19th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), Prachuap Khiri Khan, Thailand, May 24-27, 2022, pp.
1-5, doi: 10.1109/ECTI-CON54298.2022.9795504.

[10] A. Savit and A. Damor, “Revolutionizing retail stores with computer vision and
edge Al: A novel shelf management system,” 2023 2nd International Conference
on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, May 4-
6, 2023, pp. 69-74, doi: 10.1109/ICAAIC56838.2023.10140947.

[11] Apple, “iPhone 12 — Technical Specification,” support.apple.com [Online].
Available: https://support.apple.com/kb/SP830. [Accessed: February 22, 2023].

[12] Apple, “iPhone 12 Pro — Technical Specification,” support.apple.com [Online].
Available: https://support.apple.com/kb/SP831. [Accessed: February 22, 2023].

[13] Apple, “iPad Pro, 1l-Inch (3rd Generation) - Technical Specifications,”
support.apple.com [Online]. Available: https://support.apple.com/en-us/111897.
[Accessed: May 14, 2025].

[14] NVIDIA, “Jetson Orin Nano Super Development Kit,” nvidia.com [Online].
Available: https://www.nvidia.com/en-us/autonomous-machines/embedded-syste
ms/jetson-orin/nano-super-developer-kit. [Accessed: May 1, 2025].

[15] Apple, “iPhone 13 Pro — Technical Specification,” support.apple.com [Online].
Available: https://support.apple.com/kb/SP852. [Accessed: February 22, 2023].

[16] Apple, “iPhone 14 Pro — Technical Specification,” support.apple.com [Online].
Available: https://support.apple.com/kb/SP875. [Accessed: February 22, 2023].

[17] Apple, “iPhone 15 Pro — Tech Specs,” support.apple.com [Online]. Available:
https://support.apple.com/en-us/111829. [Accessed: May 14, 2025].

https://support.apple.com/kb/SP831
https://support.apple.com/en-us/111897
https://support.apple.com/kb/SP852
https://support.apple.com/kb/SP875
https://support.apple.com/en-us/111829

61

[18] NVIDIA, “GeForce RTX 3070 Family,” nvidia.com [Online]. Available:
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3070-3070ti.
[Accessed: May 14, 2025].

[19] Amazon, “Amazon EC2 G5 Instances,” Amazon Web Services [Online].
Available: https://aws.amazon.com/ec2/instance-types/g5. [Accessed: May 14,
2025].

[20] NVIDIA, “NVIDIA A10 Tensor Core GPU,” nvidia.com [Online]. Available:
https://www.nvidia.com/en-us/data-center/products/al0-gpu. [Accessed: May 14,
2025].

[21] Apple, “Create ML Overview — Machine Learning,” developer.apple.com
[Online]. Awvailable: https://developer.apple.com/machine-learning/create-ml.
[Accessed: Febuary 22, 2023].

[22] Apple, “Create ML,” developer.apple.com [Online]. Available:
https://developer.apple.com/documentation/createml. [Accessed: Febuary 22,
2023].

[23] Apple, “Core ML Overview — Machine Learning,” developer.apple.com [Online].
Available: https://developer.apple.com/machine-learning/core-ml/. [Accessed:
February 22, 2023].

[24] Apple, “Core ML,” Apple Developer Documentation [Online]. Available:
https://developer.apple.com/documentation/coreml. [Accessed: February 22,
2023].

[25] M. Abadi el al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems,” arxiv.org [Online]. Available: https://doi.org/10.48550/
arXiv.1603.04467. [Accessed: Febuary 22, 2023].

’

[26] TensorFlow, “7ensorFlow,” tensorflow.org [Online]. Available: https://www.
tensorflow.org. [Accessed: February 22, 2023].

[27] TensorFlow, “Tensorflow/Tensorflow: An Open Source Machine Learning
Framework for Everyone,” GitHub [Online]. Available: https://github.com/
tensorflow/tensorflow. [Accessed: February 22, 2023].

[28] Keras, “Keras: Deep Learning for Humans,” keras.io [Online]. Available:

https://keras.io/. [Accessed: February 22, 2023].

https://aws.amazon.com/ec2/instance-types/g5
https://www.nvidia.com/en-us/data-center/products/a10-gpu
https://keras.io/

62

[29] NVIDIA, “NVIDIA TensorRT,” developer.nvidia.com [Online]. Available:
https://developer.nvidia.com/tensorrt. [Accessed: February 22, 2023].

[30] W. Shi etal., “Edge computing: Vision and challenges,” in /[EEE Internet of Things
Journal, vol. 3, no. 5, pp. 637-646, October 2016, doi: 10.1109/JI0T.2016.257919
8.

[31] Wikipedia, “Graphic Processing Unit,” wikipedia.org [Online]. Available:
https://en.wikipedia.org/wiki/Graphics_processing_unit. [Accessed: February 22,
2023].

[32] Wikipedia “System on a Chip,” wikipedia.org [Online]. Available:
https://en.wikipedia.org/wiki/System _on a chip. [Accessed: May 9, 2025].

[33] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
in Proceedings of the IEEE, vol. 107, no. 8, pp. 1655-1674, August 2019, doi:
10.1109/JPROC.2019.2921977.

[34] GeeksForGeeks, “What is Image Classification?,” geeksforgeeks.org [Online].
Available: https://www.geeksforgeeks.org/what-is-image-classification.
[Accessed: May 14, 2025].

[35] Google AI for Developers, “LiteRT,” ai.google.dev [Online]. Available:
https://ai.google.dev/edge/litert. [Accessed: May 9, 2025].

[36] S. R. Reza et al., “Inference performance comparison of convolutional neural
networks on edge devices,” in 6th EAI International Conference, SmartCity360°,
Virtual Event, December 2-4, 2020, pp. 323-335, doi: 10.1007/978-3-030-76063-
2 23.

[37] A. Ignatov et al., “Al Benchmark: All about Deep Learning on Smartphones in
2019,” arxiv.org [Online]. Available: https://doi.org/10.48550/arXiv.1910.06663.
[Accessed: February 22, 2023].

[38] H. Smolic, “Al and Machine Learning Glossary,” Graphic Note [Online].
Available: https://graphite-note.com/comprehensive-ai-and-machine-learning-
glossary. [Accessed: February 22, 2023].

[39] Omardonia, “What is a Confusion Matrix and How is it Used in Evaluating Model
Performance,” Medium [Online]. Available: https://levelup.gitconnected.com/
what-is-a-confusion-matrix-and-how-is-it-used-in-evaluating-model-performanc

e-b3101143c981. [Accessed: February 22, 2023].

https://developer.nvidia.com/tensorrt
https://en.wikipedia.org/wiki/Graphics_processing_unit
https://en.wikipedia.org/wiki/System_on_a_chip
https://ai.google.dev/edge/litert
https://graphite-note.com/comprehensive-ai-and-machine-learning-glossary
https://graphite-note.com/comprehensive-ai-and-machine-learning-glossary

63

[Online]. Available: https://developer.apple
5].

o.com [Online]. Available: https://fastapi
]‘

[40] Apple, “Swift,” developer.apple.co:
.com/swift. [Accessed: May 14,
[41] Tiangolo, “FastAPI,” fastapi

.tiangolo.com. [Accessed: M

\ulag
a 97,}

O
N <
6 Appendice

65

\ulag
13 &]b

oM
6 Appendix A
urce Code —iOS S

ContentView.swift

66

import SwiftUI
import UIKit

struct ContentView: View {

var body: some View {

ImageClassifierView()

#Preview {

ContentView()

Views/ImageClassifierView.swift

import Foundation
import SwiftUI
import Photos

import os
struct ImageClassifierView2: View {
private let logger = Logger(

subsystem: Bundle.main.bundleldentifier!,

category: String(describing: ContentView.self)

/Il A predictor instance that uses Vision and Core ML to generate prediction

strings from a photo.

private let imageClassificationService = ImageClassificationService()

67

let encoder = JSONEncoder()

@ObservedObject var testScenarioViewModel = TestScenarioViewModel()

nn

(@State private var albumName: String =

(@State private var albums: [PHAssetCollection] = []
(@State private var openPicker = false

(@State private var inferenceTimeElapsed: Double = 0

@State private var inferenceTimeStart: CFAbsoluteTime? = nil

@State private var e2eTimeElapsed: Double =0
@State private var e2eTimeStart: CFAbsoluteTime? = nil

@State private var successCount: Int =0

@State private var sumInferenceTime: Double = 0
@State private var minInferenceTime: Double?
@State private var maxInferenceTime: Double?

@State private var showPerformanceResult: Bool = false

@State private var correctPredictionCount: Int = 0

@State private var incorrectPredictionCount: Int =0

@State private var sumConfidenceScore: Double = 0

nn

@State private var fileName: String =

var body: some View {

VStack {

68

NavigationView {
Form {
Section("Config") {

Picker("Album", selection: $albumName) {
Text("Recents").tag("")
ForEach(albums, id: \.self) { album in

Text(album.localizedTitle 7?7 "")

.tag(album.localizedTitle ?? "")

}
.pickerStyle(.navigationLink)
}
Section(header: Text("Test Information")) {
Text("ID: " + getTestId())
Text("Name: " + getTestName())
Button(action: testScenarioViewModel.createTestScenario) {

Label("Create Test Scenario", systemImage: "plus")

}

Section("Run") {
Button(action: submit) {

Text("Run")

b

if (showPerformanceResult) {
Section("Result") {
Text("Done \(successCount) images.")
if (successCount > 0) {
Text("Average Inference Time \(sumInferenceTime /
Double(successCount)) ms.")

Text("Max Inference Time: \(maxInferenceTime ?? 0) ms")

69

Text("Min Inference Time: \(minInferenceTime ?? 0) ms")
Text("Correct Prediction: \(correctPredictionCount)")
Text("Incorrect Prediction: \(incorrectPredictionCount)")
Text(String(format: "Accuracy: %.21%%",
Double(correctPredictionCount) / Double(successCount) * 100))

b

b

-navigationTitle("Classify Images")

}
.onAppear() {

loadAlbums()

func getTestld() -> String {
guard let createdTestScenario = testScenarioViewModel.created TestScenario
else {

return "Undefined"

}

return String(createdTestScenario.id)

func getTestName() -> String {

return testScenarioViewModel.createdTestScenario?.name ?? "Undefined"

func submit() {

showPerformanceResult = true

70

loadImagesFromAlbum(albumName: albumName)

func loadImagesFromAlbum(albumName: String) -> Void {
let fetchOptions = PHFetchOptions()
fetchOptions.predicate = NSPredicate(format: "title = %@", albumName)

let albums = PHAssetCollection.fetchAssetCollections(with: .album,

subtype: .any, options: fetchOptions)

if let album = albums.firstObject {

let assets = PHAsset.fetchAssets(in: album, options: nil)

for index in 0..<assets.count {

let asset = assets[index]|

// Now you can do something with each asset, like load its image

loadImage(for: asset)

func loadImage(for asset: PHAsset) {
e2eTimeStart = CFAbsoluteTimeGetCurrent()
let imageManager = PHImageManager.default()
let requestOptions = PHImageRequestOptions()
requestOptions.deliveryMode = .highQualityFormat

requestOptions.isSynchronous = false

imageManager.requestlmage(for: asset, targetSize: CGSize(width: 100, height:

100), contentMode: .aspectFill, options: requestOptions) { (image,) in

71

if let image = image {

let resources = PHAssetResource.assetResources(for: asset)

if let originalFilename = resources.first?.originalFilename {
logger.info("Image file name: \(originalFilename)")
fileName = originalFilename

} else {
logger.info("Image file name not available")

b

// Do something with the image, e.g., display it

/l print("Loaded image: \(image)")
classifylmage(image: image)

usleep(200 * 1000) // Sleep for milliseconds

func classifylmage(image: Ullmage) {

logger.info("Begin Classification")
logger.info("Image Selected")
do {

logger.info("Start Inference")

inferenceTimeStart = CFAbsoluteTimeGetCurrent()

try imageClassificationService.classify(

for: image,

completionHandler: imageClassificationHandler

} catch {
logger.error("Vision was unable to make a

prediction...\n\n\(error.localizedDescription)")

j

72

func imageClassificationHandler(_ predictions: [Prediction]?) {

if let predictions {

/l for prediction in predictions {
/l print(prediction)
// }

if let prediction = predictions.first {
let inferenceTimeInMillisec = (CFAbsolute TimeGetCurrent() -
inferenceTimeStart!) * 1000
logger.info("\(prediction.classification.capitalized)
(\(prediction.confidence * 100)%)")
logger.info("Done Inference, Time Elapsed: \(inferenceTimeInMillisec)
ms")
let e2eTimelnMillisec = (CFAbsoluteTimeGetCurrent() -
inferenceTimeStart!) * 1000
successCount += 1
if (albumName.lowercased() == prediction.classification.lowercased()) {
correctPredictionCount += 1
}
else {
incorrectPredictionCount += 1
}
if let test = testScenarioViewModel.createdTestScenario {
createRecord(record: Record(
test: test.id,
inferenceTime: inferenceTimelnMillisec,
executionTime: e2eTimeInMillisec,
imageFileName: fileName,

actual: albumName,

73

prediction: prediction.classification.capitalized,

accurate: albumName.lowercased() ==
prediction.classification.lowercased(),

confidence: prediction.confidence,

dataTransfer: 0)

b

else {
logger.warning("Test ID not defined.")
b

submitInferenceTimeElapsed(timeElapsed: inferenceTimeInMillisec)

func submitInferenceTimeElapsed(timeElapsed: Double) {
sumInferenceTime += timeElapsed
if let max = maxInferenceTime {
if (timeElapsed > max) {

maxInferenceTime = timeElapsed

}
else {
maxInferenceTime = timeElapsed
}
if let min = minInferenceTime {
if (timeElapsed < min) {

minInferenceTime = timeElapsed

74

else {

minInferenceTime = timeElapsed

func loadAlbums() {
openPicker = true
let fetchOptions = PHFetchOptions()
let albums = PHAssetCollection.fetchAssetCollections(with: .album,
subtype: .any, options: fetchOptions)
albums.enumerateObjects { (collection, ,)in

self.albums.append(collection)

func createRecord(record: Record) {
if let test = testScenarioViewModel.createdTestScenario {

print(test)

let request = ApiService.post(path: "records", data: [
"test": test.id,
"inferenceTime": record.inferenceTime,
"executionTime": record.executionTime,
"imageFileName": record.imageFileName,
"actual": record.actual,
"prediction": record.prediction,
"accurate": record.accurate,
"confidence": record.confidence,

"dataTransfer": record.dataTransfer,

D

75

let session = URLSession(configuration: URLSessionConfiguration.default)

let task = session.dataTask(with: request) { (data, response, error) in
guard let data = data, error == nil else {
// handle error
logger.error("Unexpected Error")

return

if let httpStatus = response as? HTTPURLResponse, ![200,
201].contains(httpStatus.statusCode) {
// handle non-200 status code
print(data)
logger.error("Failed 2")

return

let responseString = String(data: data, encoding: .utf8)
// handle response

logger.info("Successfully Stored Prediction Result")

task.resume()

Models/Prediction.swift

import Foundation

struct Prediction: Codable {

/// The name of the object or scene the image classifier recognizes in an image.

let classification: String

/// The image classifier's confidence as a percentage string.
11
/// The prediction string doesn't include the % symbol in the string.

let confidence: Float

Models/TestScenario.swift

import Foundation

struct TestScenario: Codable {
let id: Int
let name: String
let description: String

let startedTime: String

Models/Record.swift

import Foundation

struct Record {
let test: Int
let inferenceTime: Double
let executionTime: Double
let imageFileName: String
let actual: String
let prediction: String
let accurate: Bool

let confidence: Float

77

let dataTransfer: Double

ViewModels/TestScenarioViewModel.swift

import Foundation

class TestScenarioViewModel: ObservableObject {

@Published var createdTestScenario: TestScenario?

private func getCurrentTimestampInMilliseconds() -> Int {

return Int(Date().timelntervalSince1970 * 1000)

func createTestScenario() {
let session = URLSession(configuration: URLSessionConfiguration.default)
let request: URLRequest = ApiService.post(path: "tests", data: [
"name": DeviceConfig.getDeviceld().uppercased(),
"description": DeviceConfig.getDeviceModelName(),
"device": DeviceConfig.getDeviceld(),
"startedTime": getCurrentTimestampInMilliseconds(),
"rate": 1

D

let task = session.dataTask(with: request) { (data, response, error) in
if let error = error {

print("Error: \(error)")

if let data = data {

DispatchQueue.main.async {

78

do {
self.createdTestScenario = try
JSONDecoder().decode(TestScenario.self, from: data)
} catch {
print("Error decoding JSON: \(error)")
b
print(self.createdTestScenario ?? "Default Value for

createdTestScenario")

b

task.resume()

Config/Config.swift

import Foundation

struct Config {
public static let apiBaseUrl = "http://API BASE URL"

Config/DeviceConfig.swift

import Foundation

import UIKit

class DeviceConfig {

public static func getDeviceModel() -> String? {

79

var systemInfo = utsname()
uname(&systemInfo)
let model = withUnsafePointer(to: &systemInfo.machine) {
$0.withMemoryRebound(to: CChar.self, capacity: 1) {
ptr in String.init(validatingUTF8: ptr)

return model

public static func getDeviceModelName() -> String {

guard let model: String = getDeviceModel() else {
return "Unidentified Device Model"

}

return |
"iPhonel6,2": "iPhone 15 Pro Max",
"iPhonel6,1": "iPhone 15 Pro",
"iPhonel5,3": "iPhone 14 Pro Max",
"iPhonel5,2": "iPhone 14 Pro",
"iPhonel3,4": "iPhone 12 Pro Max",
"iPhone13,3": "iPhone 12 Pro Max"

J[model] ?? "Unlisted Device Model"

public static func getDeviceld() -> String {
guard let model: String = getDeviceModel() else {
return "ed-03"
b
return |

"iPhonel6,2": "ed-03", // iPhone 15 Pro and iPhone 15 Pro Max

80

"iPhonel5,2": "ed-02", // iPhone 14 Pro and iPhone 14 Pro Max
"iPhonel3,2": "ed-01" // iPhone 12 Pro and iPhone 12 Pro Max
J[model] ?? "Unlisted Device Model"

Services/ImageClassificationService.swift

import Foundation
import Vision
import UIKit

import os

class ImageClassificationService {

private let logger = Logger(
subsystem: Bundle.main.bundleldentifier!,

category: String(describing: ImageClassificationService.self)

/Il A common image classifier instance that all Image Predictor instances use to
generate predictions.

/1

/// Share one ~"VNCoreMLModel " instance --- for each Core ML model file ---
across the app,

/// since each can be expensive in time and resources.

static let imageClassifier = createlmageClassifier()

/// The function signature the caller must provide as a completion handler.

typealias ImagePredictionHandler = (_ predictions: [Prediction]?) -> Void

81

//l A dictionary of prediction handler functions, each keyed by its Vision request.

private var predictionHandlers = [VNRequest: ImagePredictionHandler]()

private static func createImageClassifier() -> VNCoreMLModel {
//' Use a default model configuration.

let defaultConfig = MLModelConfiguration()

/I Create an instance of the image classifier's wrapper class.

let imageClassifierWrapper = try? Petlmages2 PetFinderMS(configuration:
defaultConfig)

guard let imageClassifier = imageClassifierWrapper else {

fatalError(" App failed to create an image classifier model instance.")

/I Get the underlying model instance.

let imageClassifierModel = imageClassifier.model

// Create a Vision instance using the image classifier's model instance.
guard let imageClassifierVisionModel = try? VNCoreMLModel(for:
imageClassifierModel) else {
fatalError(" App failed to create a "VNCoreMLModel" instance.")

}

return imageClassifierVisionModel

82

/// Generates a new request instance that uses the Image Predictor's image
classifier model.

private func createlmageClassificationRequest() -~ VNImageBasedRequest {

// Create an image classification request with an image classifier model.
let imageClassificationRequest = VNCoreMLRequest(
model: ImageClassificationService.imageClassifier,

completionHandler: visionRequestHandler

imageClassificationRequest.imageCropAndScaleOption = .centerCrop

return imageClassificationRequest

/// The completion handler method that Vision calls when it completes a request.

//l - Parameters:

/Il - request: A Vision request.

/ll - error: An error if the request produced an error; otherwise "nil".

/1

//l" The method checks for errors and validates the request's results.

/I - Tag: visionRequestHandler

private func visionRequestHandler(_request: VNRequest, error: Error?) {
// Remove the caller's handler from the dictionary and keep a reference to it.
guard let predictionHandler = predictionHandlers.remove Value(forKey:

request) else {

fatalError("Every request must have a prediction handler.")

// Start with a "nil" value in case there's a problem.

83

var predictions: [Prediction]? = nil

// Call the client's completion handler after the method returns.
defer {
/I Send the predictions back to the client.

predictionHandler(predictions)

// Check for an error first.

if let error = error {

print("Vision image classification error...\n\n\(error.localizedDescription)")

return

/I Check that the results aren't 'nil".
if request.results == nil {
print("Vision request had no results.")

return

// Cast the request's results as an ' VNClassificationObservation® array.
guard let observations = request.results as? [VNClassificationObservation]
else {
// Image classifiers, like MobileNet, only produce classification
observations.
/Il However, other Core ML model types can produce other observations.
/I'For example, a style transfer model produces
"VNPixelBufferObservation® instances.
print("VNRequest produced the wrong result type: \(type(of:
request.results)).")

return

84

// Create a prediction array from the observations.
predictions = observations.map {
// Convert each observation into an ‘Prediction” instance.

observation in Prediction(classification: observation.identifier, confidence:

observation.confidence)

b

// Generates an image classification prediction for a photo.
/// - Parameter photo: An image, typically of an object or a scene.
/Il - Tag: makePredictions
func classify(for photo: Ullmage, completionHandler: @escaping
ImagePredictionHandler) throws {
logger.info("Classifying")
let orientation = CGImagePropertyOrientation(raw Value:

Ulnt32(photo.imageOrientation.raw Value))

guard let photolmage = photo.cglmage else {
fatalError("Photo doesn't have underlying CGImage.")

let imageClassificationRequest = createlmageClassificationRequest()
/limageClassificationRequest.usesCPUOnly = true

predictionHandlers[imageClassificationRequest] = completionHandler

let handler = VNImageRequestHandler(cglmage: photolmage, orientation:

orientation!)

let requests: [VNRequest] = [imageClassificationRequest]

85

// Start the image classification request.

try handler.perform(requests)

Services/ApiService.swift

import Foundation

class ApiService {

public static func post(path: String, data: [String: Any]) -> URLRequest {
var request = URLRequest(url: URL(string: Config.apiBaseUrl + "/" + path)!)
request.httpMethod = "POST"

request.setValue("application/json", forHTTPHeaderField: "Content-Type")

do {
request.httpBody = try JSONSerialization.data(withJSONObject: data)
} catch {
print("Error encoding JSON: \(error)")
§
return request

ImageClassifierApp.swift

import SwiftUI

(@main
struct ImageClassifierApp: App {
var body: some Scene {

WindowGroup {

ContentView()

86

87

\ulag
13 &]b

o
.
6 Appendix [
e Code — Python

main.py

88

import uvicorn

from fastapi import FastAPI, File, UploadFile, HTTPException
from typing import Literal

from PIL import Image

import numpy as np

from io import BytesIO

import tensorflow as tf

from pydantic import BaseModel

import time

gpu_devices = tf.config.list physical devices('GPU")
tf.config.experimental.set memory growth(gpu devices[0], True)
tf.config.experimental.set virtual device configuration(

gpu_devices[0],

[tf.config.experimental. VirtualDeviceConfiguration(memory limit=512)])

class PetlmagesPrediction(BaseModel):
dog: float

cat: float

mnmn

description =

Classify cat and dog images.

nmn

app = FastAPI(
title="PetImages API",

version="1.0.0",

description=description,

89

TFTRT MODEL DIR = "./models/tensorrt/20231129 053542 {p32"
root_tftrt = tf.saved model.load(TFTRT MODEL DIR)
func_tftrt =root_tftrt.signatures["serving_default"]

print("Model loaded.")

def predict petimages(img: Image.Image, model: Literal["native", "tftrt"]) -> dict:
image size = (180, 180)
img = img.resize(image_size)
img = np.array(img, dtype=np.float32)
img = tf.expand dims(img, 0)
if model == "native":
model func = func_native
elif model == "tftrt":
model func = func_tftrt
else:
return "Only native and tftrt are provided."
prediction = model func(img)
prediction = prediction["dense 6"]
score = float(prediction[0][0])

return dict(dog=score, cat=1 - score)

defread image file(file) -> Image.Image:
image = Image.open(BytesIO(file))

return image

@app.post("/predict")
async def predict petimage _tftrt(file: UploadFile = File(...)) ->

PetlmagesPrediction:

90

extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")
if not extension:
return "Image must be jpg or png format!"
img = read_image file(await file.read())
prediction = predict petimages(img, model="tftrt")

return prediction

def evaluate(img: Image.Image, model: Literal["native", "tftrt"]) -> dict:
print("Evaluating Image")

image size = (180, 180)

img = img.resize(image size)

img = np.array(img, dtype=np.float32)
img = tf.expand_dims(img, 0)

model func = func_tftrt

start time = time.perf counter()
prediction = model func(img)
print(prediction)

prediction = prediction["dense"|

score = float(prediction[0][0])

inference time = (time.perf counter() - start time) * 1000 # This will output in

milliseconds

return dict(
inference time=inference time,

result=dict(dog=score, cat=1 - score)

@app.post("/evaluate/tensorrt")

async def evaluate tensorrt(file: UploadFile = File(...)) -> PetlmagesPrediction:
print("Recieved HTTP Request - POST /evaluate/tensorrt")

valid_extension = file.filename.split(".")[-1] in ("jpg", "jpeg", "png")

if not valid_extension:

91

raise HttpException(status_code=400, detail="Image must be jpg or png
format!")
img = read image file(await file.read())
result = evaluate(img, "tftrt")

return result

@app.get("/")
defread root():
return dict(

nnn

message=""" Visit /docs for more details.

n

if name ==" main_ "

uvicorn.run(app)

92

\ulag
13 &]b

O
O
6 Appendix C
Source Code — API

App.java

93

package dev.babebbu.academic.thesis.master;

import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.hc.client5.http.HttpResponseException;
import org.apache.hc.client5.http.fluent.Request;

import org.apache.hc.client5.http.fluent.Response;

import org.apache.hc.core5.http.ContentType;

import javax.imageio.ImagelO;
import java.awt.*;

import java.awt.image.BufferedImage;
import java.io.File;

import java.io.IOException;

import java.util. Date;

import java.util.LinkedList;

import java.util.concurrent. TimeUnit;

public class App
{

private static LinkedList<String> fileList;

public static void main(String[] args) {

run256SquarePixelsImages(8);

private static void run512SquarePixelsImages(int numThreads) {
// Call a recursive method to list all files
fileList = new LinkedList<>();
String originalPath = "/Users/babebbu/Thesis/athg/train";

listFiles(createDirectory(originalPath));

94

String url = "http://192.168.1.200:8000/evaluate/tensorrt";
String deviceld = "EC-02";

int testld = createTest(deviceld, numThreads, fileList.size(), 512);
runUsingThreads(originalPath, testld, url, numThreads);

private static void run256SquarePixelsImages(int numThreads) {
fileList = new LinkedList<>();
String resizedImageDirectory = "/Users/babebbu/Thesis/athq/resized";

listFiles(createDirectory(resizedImageDirectory));

String url = "http://192.168.1.200:8000/evaluate/tensorrt";
String deviceld = "EC-02";

int testld = createTest(deviceld, numThreads, fileList.size(), 256);

runUsingThreads(resizedImageDirectory, testld, url, numThreads);
private static File createDirectory(String path) {

File file = new File(path);

// Check if the specified path is a directory

if (file.isDirectory()) {

throw new RuntimeException("Specified path is not a directory.");

return file;

private static void resizelmage(String directoryPath, String file) {
String inputlmagePath = directoryPath + "/" + file;
String outputlmagePath = "/Users/babebbu/Thesis/athq/resized/" + file;

// Set the desired dimensions for the resized image
int newWidth = 256; // New width in pixels
int newHeight = 256; // New height in pixels

try {
// Read the input image from the file
File inputFile = new File(inputlmagePath);
Bufferedlmage inputlmage = ImagelO.read(inputFile);

/I Create a new scaled image with the desired dimensions
BufferedImage outputimage = new Bufferedlmage(newWidth, newHeight,
inputlmage.getType());

// Perform the resizing

Graphics2D g2d = outputlmage.createGraphics();
g2d.drawlmage(inputlmage, 0, 0, new Width, newHeight, null);
g2d.dispose();

// Write the resized image to the output file
File outputFile = new File(outputlmagePath);
ImagelO.write(outputimage, "jpg", outputFile);

System.out.println("Image " + outputlmagePath + " resized successfully!");
} catch (Exception ex) {

System.err.println("Error resizing image: " + ex.getMessage());

96

private static int createTest(String deviceld, int rate, int totalFiles, int resolution)

try {

ObjectMapper mapper = new ObjectMapper();

String json = mapper.writeValueAsString(TestRequest.builder()
.name(deviceld + "-BATCH-" + rate)
.description(String.format("Nvidia RTX 3070 handling %s requests per

second. JPEG Image %sx%s.", rate, resolution, resolution))
.device(deviceld)
.rate(rate)
.startedTime(new Date().getTime())
.totalFiles(totalFiles)
.build()

)i

Response response = Request.post("http://localhost:8080/tests")
.bodyString(json, ContentType.APPLICATION JSON)
.execute();

String res = response.returnContent().asString();

System.out.println(res);

return mapper.read Value(res, Test.class).getld();

} catch (HttpResponseException e) {
System.out.println(e.getStatusCode());
System.out.println(e.getMessage());
throw new RuntimeException("...");

} catch (IOException e) {

throw new RuntimeException(e);

private static Test updateTest(int testld, int totalSuccess) {

97

try {
ObjectMapper mapper = new ObjectMapper();

String json = mapper.writeValueAsString(TestRequest.builder()
finishedTime(new Date().getTime())
.totalSuccess(totalSuccess)
totalFailed(fileList.size() - totalSuccess)
build()

);

Response response = Request.post("http://localhost:8080/tests/" + testld)
.bodyString(json, ContentType.APPLICATION JSON)
.execute();

return mapper.read Value(response.returnContent().asString(), Test.class);

} catch (IOException e) {

throw new RuntimeException(e);

private static void runUsingThreads(String directoryPath, int testld, String url, int
numThreads) {

System.out.println("Total Files: " + fileList.size());

System.out.printin("Threads starting...");

while (!fileList.isEmpty()) {

for (int i = 0; i < numThreads && !fileList.isEmpty(); i++) {

String imageFilePath = directoryPath + "/" + fileList.pop();
new Thread(new PerformanceEvaluationRunnable(testld, url,

imageFilePath)).start();

}

try {
Thread.sleep(TimeUnit. MILLISECONDS.toMillis(1000));

} catch (InterruptedException e) {

throw new RuntimeException(e);

98

private static void runUsingParallelStream(String directoryPath, int testld, String
url) {
fileList.parallelStream().forEach(file -> {
String imageFilePath = directoryPath + "/" + file;
Runnable runnable = new PerformanceEvaluationRunnable(testld, url,
imageFilePath);

runnable.run();

s

private static void listFiles(File directory) {
listFiles(directory, null);

private static void listFiles(File directory, String label) {
File[] files = directory.listFiles();

if (files !=null) {
for (File file : files) {

if (file.isDirectory()) {
/I Recursive call for subdirectories
listFiles(file, file.getName());

}

else if (file.isFile()) {
String fileName = label + "/" + file.getName();
fileList.add(fileName);

j

99

PerformanceEvaluationRunnable.java

package dev.babebbu.academic.thesis.master;

import com.fasterxml.jackson.databind.ObjectMapper;

import org.apache.hc.client5.http.fluent.Request;

import org.apache.hc.client5.http.fluent.Response;

import org.apache.hc.core5.http.ContentType;

import org.apache.http.HttpEntity;

import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpPost;

import org.apache.http.entity.mime.MultipartEntityBuilder;
import org.apache.http.entity.mime.content.FileBody;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.impl.client. HttpClients;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.io.File;

import java.io.IOException;

import java.io.InputStreamReader;
import java.nio.charset.StandardCharsets;

import java.util. Map;

import com.fasterxml.jackson.databind.PropertyNamingStrategies;

100

public class PerformanceEvaluationRunnable implements Runnable {

public static int successRequest = 0;

private final Logger log = LoggerFactory.getLogger(getClass());
private final ObjectMapper mapper;
private final ObjectMapper snakeCaseApiMapper;

private final String url;

private final int testld;

private final String imageFilePath;

private Record record;

public PerformanceEvaluationRunnable(int testld, String url, String

imageFilePath) {

this.testld = testld;

this.url = url;

this.imageFilePath = imageFilePath;

this.mapper = new ObjectMapper();

this.snakeCaseApiMapper = new ObjectMapper();

this.snakeCase ApiMapper.setPropertyNamingStrategy(new
PropertyNamingStrategies.SnakeCaseStrategy());

}

public void run() {
try (CloseableHttpClient closeableHttpClient = HttpClients.createDefault()) {
File file = new File(imageFilePath);

long fileSizeInBytes = file.length();

101

String[] path = imageFilePath.split("/");
String label = path[path.length - 2];
String filename = path[path.length - 17;

String imageFileName = label + "/" + filename;

/I Invoke Image Classification API

HttpPost httpPost = new HttpPost(url);

HttpEntity requestEntity = MultipartEntityBuilder.create()
.addPart("file", new FileBody(new File(imageFilePath)))
build();

httpPost.setEntity(requestEntity);

long startTime = System.current TimeMillis();

CloseableHttpResponse response = closeableHttpClient.execute(httpPost);
long elapsedTime = System.currentTimeMillis() - startTime;
InputStreamReader responseContent = new

InputStreamReader(response.getEntity().getContent(), StandardCharsets. UTF_8);

if (response.getStatusLine().getStatusCode() !=200) {

if (imageFileName.contains("Thumbs.db")) {
System.out.println("Skipping Thumbs.db file");
return;

}

if (imageFileName.contains(".DS_Store")) {
System.out.println("Skipping .DS_Store file");
return;

}

return;

102

PetImagesAPIResponse res =
snakeCaseApiMapper.read Value(response.getEntity().getContent().read AllBytes(),
PetlmagesAPIResponse.class);

String predictedLabel = res.getResult().get("Dog") >
res.getResult().get("Cat") ? "Dog" : "Cat";
double confidence = res.getResult().get(predictedLabel);

if (confidence < 0.5) {

throw new RuntimeException("Prediction Confidence is below 50%");

record = Record.builder()
.test(testld)
.inferenceTime(res.getInferenceTime())
.executionTime(elapsedTime)
.imageFileName(imageFileName)
.actual(label)
.prediction(predictedLabel)
.accurate(label.equalsIgnoreCase(predictedLabel))
.confidence(confidence)
.dataTransfer(fileSizeInBytes)
.build();

storeRecord();

closeableHttpClient.close();

successRequestt+;

} catch (IOException e) {

throw new RuntimeException(e);

103

private void storeRecord() {
try {
String json = mapper.writeValueAsString(record);
Response response = Request.post("http://localhost:8080/records")
.bodyString(json, ContentType.APPLICATION JSON)
.execute();
System.out.printin(mapper.read Value(response.returnContent().asString(),
StatsAPIResponse.class));
} catch (IOException e) {

throw new RuntimeException(e);

PetlmagesAPIResponse.java

package dev.babebbu.academic.thesis.master;

import lombok.Data;

@Data
public class PetlmagesAPIResponse {
private double inferenceTime;

private Result result;

Record.java

package dev.babebbu.academic.thesis.master;

104

import lombok.Builder;
import lombok.Data;

@Data

@Builder

public class Record {
private int test;
private double inferenceTime;
private double executionTime;
private String imageFileName;
private String actual;
private String prediction;
private boolean accurate;
private double confidence;

private double dataTransfer;

Result.java

package dev.babebbu.academic.thesis.master;

import java.util. HashMap;

public class Result extends HashMap<String, Double> {

public Double getDog() {

return get("dog");

public Double getCat() {

return get("cat");

105

public Double get(String key) {

return super.get(key.toLowerCase());

StatsAPIResponse.java

package dev.babebbu.academic.thesis.master;

import java.util. HashMap;

public class StatsAPIResponse extends HashMap<String, Object> {
b

Test.java

package dev.babebbu.academic.thesis.master;

import lombok.Data;

import java.util.Date;

import java.util. Map;

@Data
public class Test {
private int id;
private String name;
private String description;
private Map<String, Object> device;
private int rate;
private Date startedTime;

private Date finishedTime;

106

private int totalFiles;
private int totalSuccess;

private int totalFailed;

TestRequest.java

package dev.babebbu.academic.thesis.master;

import lombok.Builder;
import lombok.Data;

@Data

(@Builder

public class TestRequest {
private String name;
private String description;
private String device;
private int rate;
private long startedTime;
private long finishedTime;
private int totalFiles;
private int totalSuccess;

private int totalFailed;

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</model Version>

107

<groupld>dev.babebbu.academic.thesis.master</groupld>
<artifactld>client</artifactld>
<version>1.0-SNAPSHOT</version>

<packaging>jar</packaging>

<name>client</name>

<url>http://maven.apache.org</url>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<java.version>21</java.version>
<maven.compiler.release>2 1 </maven.compiler.release>
<maven.compiler.source>2 | </maven.compiler.source>
<maven.compiler.target>2 1 </maven.compiler.target>

</properties>

<dependencies>

<dependency>
<groupld>junit</groupld>
<artifactld>junit</artifactld>
<version>3.8.1</version>
<scope>test</scope>

</dependency>

<dependency>
<groupld>org.apache.maven.plugins</groupld>
<artifactld>maven-compiler-plugin</artifactld>
<version>3.8.1</version>

</dependency>

<dependency>

<groupld>com.mashape.unirest</groupld>

108

<artifactld>unirest-java</artifactld>
<version>1.4.9</version>

</dependency>

<dependency>
<groupld>org.apache.httpcomponents.client5</groupld>
<artifactld>httpclient5</artifactld>
<version>5.2.1</version>

</dependency>

<dependency>
<groupld>org.apache.httpcomponents.client5</groupld>
<artifactld>httpclient5-fluent</artifactld>
<version>5.2.1</version>

</dependency>

<dependency>
<groupld>com.fasterxml.jackson.core</groupld>
<artifactld>jackson-databind</artifactld>
<version>2.15.2</version>

</dependency>

<dependency>
<groupld>org.projectlombok</groupld>
<artifactld>lombok</artifactld>
<version>1.18.30</version>
<scope>provided</scope>

</dependency>

<dependency>
<groupld>org.slf4j</groupld>
<artifactld>slf4j-api</artifactld>
<version>2.0.7</version>

</dependency>

<dependency>

<groupld>org.slf4j</groupld>

109

<artifactld>slf4j-simple</artifactld>

<version>2.0.7</version>
</dependency>
</dependencies>

</project>

110

\ulag
13 &]b

oM
6 Appendix [
Code — Performa

111

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemal ocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</model Version>
<parent>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-parent</artifactld>
<version>3.1.4</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupld>dev.babebbu.academic.thesis.master</groupld>
<artifactld>stats</artifactld>
<version>0.0.1-SNAPSHOT</version>
<name>ImageClassificationPerformanceStats</name>
<description>ImageClassificationPerformanceStats</description>
<properties>
<java.version>21</java.version>
</properties>
<dependencies>
<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-data-jdbc</artifactld>
</dependency>
<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-data-jpa</artifactld>

</dependency>

<dependency>

112

<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-jdbc</artifactld>

</dependency>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-web</artifactld>

</dependency>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-devtools</artifactld>
<scope>runtime</scope>
<optional>true</optional>

</dependency>

<dependency>
<groupld>com.mysql</groupld>
<artifactld>mysql-connector-j</artifactld>
<scope>runtime</scope>

</dependency>

<dependency>
<groupld>org.mariadb.jdbc</groupld>
<artifactld>mariadb-java-client</artifactld>
<scope>runtime</scope>

</dependency>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-configuration-processor</artifactld>
<optional>true</optional>

</dependency>

<dependency>
<groupld>org.projectlombok</groupld>
<artifactld>lombok</artifactld>

113

<optional>true</optional>

</dependency>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-test</artifactld>
<scope>test</scope>

</dependency>

</dependencies>

<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactld>
<configuration>
<excludes>
<exclude>
<groupld>org.projectlombok</groupld>
<artifactld>lombok</artifactld>
</exclude>
</excludes>
</configuration>
</plugin>
</plugins>

</build>

</project>

ImageClassificationPerformanceStatsApplication.java

package dev.babebbu.academic.thesis.master.stats;

import org.springframework.boot.SpringApplication;

114

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public class ImageClassificationPerformanceStatsApplication {

public static void main(String[] args) {
SpringApplication.run(ImageClassificationPerformanceStats Application.class,
args);

b

controllers/ApplicationTypesController.java

package dev.babebbu.academic.thesis.master.stats.controllers;

import com.fasterxml.jackson.databind.ObjectMapper;

import dev.babebbu.academic.thesis.master.stats.models.entities. ApplicationType;
import
dev.babebbu.academic.thesis.master.stats.models.requests. Application TypeRequest;
import
dev.babebbu.academic.thesis.master.stats.repositories. Application TypesRepository;
import lombok.RequiredArgsConstructor;

import org.springframework.data.domain.Pageable;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import java.util. Map;

import java.util.Optional;

@RestController

115

@RequestMapping("application-types")
@RequiredArgsConstructor
public class ApplicationTypesController {

private final ApplicationTypesRepository repository;
private final ObjectMapper objectMapper;

@GetMapping
public Object list() {
return repository.findAll(Pageable.unpaged());

@GetMapping("/{slug}")
public Object get(@PathVariable("slug") final String slug) {
return repository.findByld(slug);

@PostMapping

public Object create(@RequestBody ApplicationTypeRequest request) {
ApplicationType entity = getEntityFromRequest(request);
entity.setld(request.getName().toLowerCase().replace(" ", "-"));

return repository.save(entity);

@PutMapping("/{slug}")
public Object update(@PathVariable("slug") String slug, @RequestBody
ApplicationTypeRequest request) {
Optional<ApplicationType> record = repository.findByld(slug);

if (record.isEmpty()) {

return notFoundError();

116

ApplicationType entity = getEntityFromRequest(request);
entity.setld(slug);

return repository.save(entity);

@DeleteMapping(" {slug}")
public Object delete(@PathVariable("slug") String slug) {

if (Irepository.existsByld(slug)) {
return notFoundError();

}

repository.deleteByld(slug);

return ResponseEntity.ok();

private ApplicationType getEntityFromRequest(ApplicationTypeRequest

request) {

return objectMapper.convertValue(request, ApplicationType.class);

private Object notFoundError() {
return ResponseEntity
Status(HttpStatus. NOT FOUND)
.body(Map.of("message", "Application Type not found"));

controllers/DeviceController.java

117

package dev.babebbu.academic.thesis.master.stats.controllers;

import dev.babebbu.academic.thesis.master.stats.models.entities.*;

import dev.babebbu.academic.thesis.master.stats.models.requests.DeviceRequest;

import dev.babebbu.academic.thesis.master.stats.repositories.*;
import lombok.RequiredArgsConstructor;

import org.springframework.data.domain.Pageable;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import java.util. Map;

import java.util.Optional;

@RestController
@RequestMapping("devices")
@Required ArgsConstructor

public class DevicesController {

private final DevicesRepository repository;

private final MLEnvironmentsRepository mlEnvironmentsRepository;

@GetMapping
public Object list() {
return repository.findAll(Pageable.unpaged());

@GetMapping("/{slug}")
public Object get((@PathVariable("slug") final String slug) {
return repository.findByld(slug);

118

@PostMapping
public Object create(@RequestBody DeviceRequest request) {
Optional<MLEnvironment> environment =

mlEnvironmentsRepository.findByld(request.getEnvironment());

if (environment.isEmpty()) {
return ResponseEntity.badRequest().body(Map.of{
"message", "Some of arguments are not exist in the database.",
"exists", Map.of(

"environment", false

));

Device entity = Device.builder()
.id(request.getName().toLowerCase().replace(" ", "-"))
.name(request.getName())
.displayName(request.getDisplayName())
.description(request.getDescription())
.hardware(request.getHardware())
Jocation(request.getLocation())
Jatency(request.getLatency())
.environment(environment.get())

.build();

return repository.save(entity);

@PutMapping("/{slug}")
public Object update(@PathVariable("slug") String slug, @RequestBody

119

DeviceRequest request) {

Optional<Device> record = repository.findByld(slug);

if (record.isEmpty()) {

return notFoundError();

Optional<MLEnvironment> environment =

mlEnvironmentsRepository.findByld(request.getEnvironment());

if (environment.isEmpty()) {
return ResponseEntity.badRequest().body(Map.of(
"message", "Some of arguments are not exist in the database.",
"exists", Map.of(

"environment", false

)

Device entity = Device.builder()
id(slug)
.name(request.getName())
.displayName(request.getDisplayName())
.description(request.getDescription())
.hardware(request.getHardware())
Jocation(request.getLocation())
Jlatency(request.getLatency())
.environment(environment.get())

build();

return repository.save(entity);

120

@DeleteMapping(" {slug}")
public Object delete(@PathVariable("slug") String slug) {
if (Irepository.existsByld(slug)) {
return notFoundError();
}
repository.deleteByld(slug);
return ResponseEntity.ok();

private Object notFoundError() {
return ResponseEntity
status(HttpStatus. NOT FOUND)
.body(Map.of("message", "Device not found"));

controllers/MLEnvironmentsController.java

package dev.babebbu.academic.thesis.master.stats.controllers;

import dev.babebbu.academic.thesis.master.stats.models.entities. ApplicationType;
import dev.babebbu.academic.thesis.master.stats.models.entities. MLEnvironment;
import dev.babebbu.academic.thesis.master.stats.models.entities.NetworkTier;
import dev.babebbu.academic.thesis.master.stats.models.entities. Runtime;

import

dev.babebbu.academic.thesis.master.stats.models.requests. MLEnvironmentRequest;
import
dev.babebbu.academic.thesis.master.stats.repositories.Application TypesRepository;

import

121

dev.babebbu.academic.thesis.master.stats.repositories. MLEnvironmentsRepository;

import dev.babebbu.academic.thesis.master.stats.repositories.RuntimesRepository;

import dev.babebbu.academic.thesis.master.stats.repositories. TiersRepository;

import lombok.RequiredArgsConstructor;

import org.springframework.data.domain.Pageable;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import java.util. Map;

import java.util.Optional;

@RestController
@RequestMapping("ml-environments")
@RequiredArgsConstructor

public class MLEnvironmentsController {

private final MLEnvironmentsRepository repository;
private final ApplicationTypesRepository applicationTypesRepository;
private final TiersRepository networkTiersRepository;
private final RuntimesRepository runtimesRepository;
@GetMapping
public Object list() {
return repository.findAll(Pageable.unpaged());

@GetMapping("/{slug}")
public Object get(@PathVariable("slug") final String slug) {
return repository.findByld(slug);

122

@PostMapping
public Object create(@RequestBody MLEnvironmentRequest request) {
Optional<NetworkTier> networkTier =
networkTiersRepository.findByld(request.getTier());
Optional<ApplicationType> applicationType =
applicationTypesRepository.findByld(request.getApplicationType());
Optional<Runtime> runtime =

runtimesRepository.findByld(request.getRuntime());

if (networkTier.isEmpty() || applicationType.isEmpty() || runtime.isEmpty()) {
return ResponseEntity.badRequest().body(Map.of{
"message", "Some of arguments are not exist in the database.",
"exists", Map.of(
"tier", networkTier.isPresent(),
"applicationType", applicationType.isPresent(),

"runtime", runtime.isPresent()

)

MLEnvironment entity = MLEnvironment.builder()
.id(request.getName().toLowerCase().replace(" ", "-"))
.name(request.getName())
tier(networkTier.get())
.applicationType(applicationType.get())
.runtime(runtime.get())

build();

return repository.save(entity);

123

@PutMapping("/{slug}")
public Object update(@PathVariable("slug") String slug, @RequestBody
MLEnvironmentRequest request) {

Optional<MLEnvironment> record = repository.findByld(slug);

if (record.isEmpty()) {

return notFoundError();

Optional<NetworkTier> networkTier =
networkTiersRepository.findByld(request.getTier());
Optional<ApplicationType> applicationType =
applicationTypesRepository.findByld(request.getApplicationType());
Optional<Runtime> runtime =

runtimesRepository.findByld(request.getRuntime());

if (networkTier.isEmpty() || applicationType.isEmpty() || runtime.isEmpty()) {
return ResponseEntity.badRequest().body(Map.of{
"message", "Some of arguments are not exist in the database.",
"exists", Map.of(
"tier", networkTier.isPresent(),
"applicationType", applicationType.isPresent(),

"runtime", runtime.isPresent()

);

MLEnvironment entity = MLEnvironment.builder()
.1d(slug)
.name(request.getName())

tier(networkTier.get())

124

.applicationType(applicationType.get())
runtime(runtime.get())

Jbuild();

return repository.save(entity);

@DeleteMapping(" {slug}")
public Object delete(@PathVariable("slug") String slug) {
if (Irepository.existsByld(slug)) {
return notFoundError();
}
repository.deleteByld(slug);
return ResponseEntity.ok();

private Object notFoundError() {
return ResponseEntity
status(HttpStatus. NOT FOUND)
.body(Map.of("message", "ML Environment not found"));

controllers/NetworkTiersController.java

package dev.babebbu.academic.thesis.master.stats.controllers;

import com.fasterxml.jackson.databind.ObjectMapper;
import dev.babebbu.academic.thesis.master.stats.models.entities.NetworkTier;
import

dev.babebbu.academic.thesis.master.stats.models.requests.Network TierRequest;

125

import dev.babebbu.academic.thesis.master.stats.repositories. TiersRepository;
import lombok.RequiredArgsConstructor;

import org.springframework.data.domain.Pageable;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import java.util. Map;

import java.util.Optional;

@RestController
@RequestMapping("network-tiers")
@RequiredArgsConstructor

public class NetworkTiersController {

private final TiersRepository tiersRepository;
private final ObjectMapper objectMapper;

@GetMapping
public Object listNetworkTiers() {
return tiersRepository.findAll(Pageable.unpaged());

@GetMapping("/{slug}")
public Object getNetworkTier(@PathVariable("slug") final String slug) {
return tiersRepository.findByld(slug);

@PostMapping

public Object createNetwork Tier(@RequestBody NetworkTierRequest request) {

NetworkTier networkTier = getEntityFromRequest(request);

126

networkTier.setld(request.getName().toLowerCase().replace(" ", "-"));

return tiersRepository.save(networkTier);

@PutMapping("/{slug}")
public Object updateNetworkTier(@PathVariable("slug") String slug,
@RequestBody NetworkTierRequest request) {
Optional<NetworkTier> record = tiersRepository.findByld(slug);

if (record.isEmpty()) {

return networkTierNotFoundError();

NetworkTier networkTier = getEntityFromRequest(request);

networkTier.setld(slug);

return tiersRepository.save(networkTier);

private NetworkTier getEntityFromRequest(NetworkTierRequest request) {

return objectMapper.convertValue(request, NetworkTier.class);

@DeleteMapping(" {slug}")
public Object deleteNetworkTier(@PathVariable("slug") String slug) {
if (tiersRepository.existsByld(slug)) {
return networkTierNotFoundError();
b
tiersRepository.deleteByld(slug);
return ResponseEntity.ok();

127

private Object networkTierNotFoundError() {
return ResponseEntity
status(HttpStatus. NOT FOUND)
.body(Map.of("message", "Network Tier not found"));

controllers/RecordsController.java

package dev.babebbu.academic.thesis.master.stats.controllers;

import dev.babebbu.academic.thesis.master.stats.models.entities.Record;

import dev.babebbu.academic.thesis.master.stats.models.entities. Test;

import dev.babebbu.academic.thesis.master.stats.models.requests.RecordRequest;
import dev.babebbu.academic.thesis.master.stats.repositories.RecordsRepository;
import dev.babebbu.academic.thesis.master.stats.repositories. TestRepository;
import lombok.Required ArgsConstructor;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.data.domain.Pageable;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import java.util. Map;

import java.util.Optional;

@RestController

@RequestMapping("records")

128

@RequiredArgsConstructor

public class RecordsController {

private final RecordsRepository repository;
private final TestRepository testRepository;
private final Logger log = LoggerFactory.getLogger(getClass());

@GetMapping
public Object list() {
return repository.findAlIByTestIsNotNull(Pageable.unpaged());

@GetMapping("/{id}")
public Object get(@PathVariable("id") final int id) {
return repository.findByld(id);

@PostMapping
public Object create(@RequestBody RecordRequest request) {
log.info("{}", request);

Optional<Test> test = testRepository.findByld(request.getTest());

if (test.isEmpty()) {
return ResponseEntity.badRequest().body(Map.of{
"message", "Some of arguments are not exist in the database.",
"exists", Map.of(

"device", false

));

129

Record entity = Record.builder()
.test(test.get())
.inferenceTime(request.getInferenceTime())
.executionTime(request.getExecutionTime())
.imageFileName(request.getimageFileName())
.prediction(request.getPrediction())
.actual(request.getActual())
.accurate(request.isAccurate())
.confidence(request.getConfidence())
.dataTransfer(request.getDataTransfer())
.build();

return repository.save(entity);

@PutMapping("/{id}")
public Object update(@PathVariable("id") int id, @RequestBody RecordRequest
request) {

Optional<Record> record = repository.findByld(id);

if (record.isEmpty()) {

return notFoundError();

Optional<Test> test = testRepository.findByld(request.getTest());

if (test.isEmpty()) {

return ResponseEntity.badRequest().body(Map.of{

"message", "Some of arguments are not exist in the database.",

"exists", Map.of(

130

"device", false

)

Record entity = Record.builder()
1d(id)
.test(test.get())
.inferenceTime(request.getInferenceTime())
.executionTime(request.getExecutionTime())
.imageFileName(request.getimageFileName())
.prediction(request.getPrediction())
.actual(request.getActual())
.accurate(request.isAccurate())
.confidence(request.getConfidence())
.dataTransfer(request.getDataTransfer())
build();

return repository.save(entity);

@DeleteMapping(" {id}")
public Object delete(@PathVariable("id") int id) {
if (Irepository.existsByld(id)) {
return notFoundError();
}
repository.deleteByld(id);
return ResponseEntity.ok();

private Object notFoundError() {

131

return ResponseEntity
status(HttpStatus. NOT FOUND)
.body(Map.of("message", "Record not found"));

controllers/RuntimesController.java

package dev.babebbu.academic.thesis.master.stats.controllers;

import com.fasterxml.jackson.databind.ObjectMapper;

import dev.babebbu.academic.thesis.master.stats.models.entities. Runtime;

import dev.babebbu.academic.thesis.master.stats.models.requests.RuntimeRequest;
import dev.babebbu.academic.thesis.master.stats.repositories. RuntimesRepository;
import lombok.RequiredArgsConstructor;

import org.springframework.data.domain.Pageable;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import java.util. Map;

import java.util.Optional;

@RestController
@RequestMapping(''runtimes")
@RequiredArgsConstructor

public class RuntimesController {

private final RuntimesRepository repository;

private final ObjectMapper objectMapper;

132

@GetMapping
public Object list() {
return repository.findAll(Pageable.unpaged());

@GetMapping("/{slug}")
public Object get((@PathVariable("slug") final String slug) {
return repository.findByld(slug);

@PostMapping

public Object create(@RequestBody RuntimeRequest request) {
Runtime entity = getEntityFromRequest(request);
entity.setld(request.getName().toLowerCase().replace(" ", "-"));

return repository.save(entity);

@PutMapping("/{slug}")
public Object update(@PathVariable("slug") String slug, @RequestBody
RuntimeRequest request) {

Optional<Runtime> record = repository.findByld(slug);

if (record.isEmpty()) {

return notFoundError();

Runtime entity = getEntityFromRequest(request);

entity.setld(slug);

return repository.save(entity);

133

@DeleteMapping(" {slug}")
public Object delete(@PathVariable("slug") String slug) {
if (Irepository.existsByld(slug)) {
return notFoundError();
}
repository.deleteByld(slug);
return ResponseEntity.ok();

private Runtime getEntityFromRequest(Object request) {

return objectMapper.convertValue(request, Runtime.class);

private Object notFoundError() {
return ResponseEntity
status(HttpStatus. NOT FOUND)

.body(Map.of("message", "Runtime not found"));

controllers/TestsController.java

package dev.babebbu.academic.thesis.master.stats.controllers;

import dev.babebbu.academic.thesis.master.stats.models. TestStats;

import dev.babebbu.academic.thesis.master.stats.models.entities.Device;
import dev.babebbu.academic.thesis.master.stats.models.entities. Test;

import dev.babebbu.academic.thesis.master.stats.models.requests. TestRequest;

import dev.babebbu.academic.thesis.master.stats.repositories.DevicesRepository;

134

import dev.babebbu.academic.thesis.master.stats.repositories. TestRepository;
import dev.babebbu.academic.thesis.master.stats.services.StatsService;
import dev.babebbu.academic.thesis.master.stats.services. ToolsService;
import lombok.RequiredArgsConstructor;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.data.domain.Page;

import org.springframework.data.domain.Pagelmpl;

import org.springframework.data.domain.Pageable;

import org.springframework.http.HttpStatus;

import org.springframework.http.ResponseEntity;

import org.springframework.web.bind.annotation.*;

import java.util. Map;

import java.util.Optional;
@RestController
@RequestMapping("tests")
@RequiredArgsConstructor

public class TestsController {

private final TestRepository repository;

private final DevicesRepository devicesRepository;

private final Logger log = LoggerFactory.getLogger(getClass());

private final StatsService statsService;

private final ToolsService toolsService;

@GetMapping

135

public Object list() {
return repository.findAll(Pageable.unpaged());

@GetMapping("stats")
public Object listStatsOfAllTests() {
Page<TestStats> testStats =
repository.findAll(Pageable.unpaged()).map(statsService::getStatsByTest);

return new Pagelmpl<>(toolsService.reverseCollection(testStats.stream()));

@GetMapping("{id}")
public Object get(@PathVariable("id") final int id) {
return repository.findByld(id);

@PostMapping
public Object create(@RequestBody TestRequest request) {
Optional<Device> device =

devicesRepository.findByld(request.getDevice().toLowerCase());

if (device.isEmpty()) {
return ResponseEntity.badRequest().body(Map.of(
"message", "Some of arguments are not exist in the database.",
"exists", Map.of(

"environment", false

)

Test entity = Test.builder()

136

.name(request.getName())
.description(request.getDescription())
rate(request.getRate())
.device(device.get())
.totalSuccess(request.getTotalSuccess())
totalFailed(request.getTotalFailed())
totalFiles(request.getTotalFiles())
Jbuild();

entity.setStarted Time(request.getStartedTime());
/! entity.setFinished Time(request.getFinished Time());

log.info("{}", request);

return repository.save(entity);

@PutMapping("{id}")

public Object update(@PathVariable("id") int id, (@RequestBody TestRequest

request) {
Optional<Test> record = repository.findByld(id);

if (record.isEmpty()) {

return notFoundError();

Optional<Device> device =

devicesRepository.findByld(request.getDevice().toLowerCase());

if (device.isEmpty()) {
return ResponseEntity.badRequest().body(Map.of{

137

"message", "Some of arguments are not exist in the database.",
"exists", Map.of(

"environment", false

)

Test entity = Test.builder()
1d(id)
.name(request.getName())
.description(request.getDescription())
.rate(request.getRate())
.device(device.get())
.totalSuccess(request.getTotalSuccess())
.totalFailed(request.getTotalFailed())
.totalFiles(request.getTotalFiles())
build();

entity.setStartedTime(request.getStartedTime());
entity.setFinished Time(request.getFinished Time());

return repository.save(entity);

@PatchMapping(" {id}")
public Object finalize(@PathVariable("id") int id, @RequestBody TestRequest
request) {
Optional<Test> record = repository.findByld(id);

if (record.isEmpty()) {

return notFoundError();

138

Test entity = Test.builder()
1d(id)
.totalSuccess(request.getTotalSuccess())
totalFailed(request.getTotalFailed())
Jbuild();

entity.setFinished Time(request.getFinished Time());

return repository.save(entity);

@DeleteMapping("{id}")
public Object delete(@PathVariable("id") int id) {
if (Irepository.existsByld(id)) {
return notFoundError();
}
repository.deleteByld(id);
return ResponseEntity.ok();

private Object notFoundError() {
return ResponseEntity
status(HttpStatus. NOT FOUND)
.body(Map.of("message", "Device not found"));

entities/ApplicationType.java

139

package dev.babebbu.academic.thesis.master.stats.models.entities;

import jakarta.persistence.*;

import lombok.AllArgsConstructor;
import lombok.Builder;

import lombok.Data;

import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
@AIllArgsConstructor
(@Builder
(@Entity
(@Table(name = "application types")
public class ApplicationType {
@]Id
private String id;
private String name;
private String type;

private String programmingLanguage;

entities/Device.java

package dev.babebbu.academic.thesis.master.stats.models.entities;

import jakarta.persistence.*;

import lombok.AllArgsConstructor;
import lombok.Builder;

import lombok.Data;

import lombok.NoArgsConstructor;

140

@Data
@NoArgsConstructor
@AllArgsConstructor
@Builder

@Entity

@Table(name = "devices")

public class Device {

@Id

private String id;

private String name;

private String displayName;
private String description;
private String hardware;
private String location;

private double latency;

@ManyToOne
@JoinColumn

private MLEnvironment environment;

entities/MLEnvironment.java

package dev.babebbu.academic.thesis.master.stats.models.entities;

import jakarta.persistence.*;

import lombok.AllArgsConstructor;
import lombok.Builder;

import lombok.Data;

import lombok.NoArgsConstructor;

141

@Data
@NoArgsConstructor
@AIllArgsConstructor
@Builder

@Entity
@Table(name = "ml_environments")

public class MLEnvironment {

@ld

private String id;

private String name;

@ManyToOne

private NetworkTier tier;

@ManyToOne
@JoinColumn

private Runtime runtime;

@ManyToOne
@JoinColumn
private ApplicationType applicationType;

entities/NetworkTier.java

package dev.babebbu.academic.thesis.master.stats.models.entities;

import jakarta.persistence.Entity;

142

import jakarta.persistence.ld;
import jakarta.persistence.Table;
import lombok.AllArgsConstructor;
import lombok.Builder;

import lombok.Data;

import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
@AIllArgsConstructor
@Builder
(@Entity
(@Table(name = "network tiers")
public class NetworkTier {
@Id
private String id;
private String name;
private String tier;
private String type;

private String description;

entities/Record.java

import jakarta.persistence.*;

import lombok.AllArgsConstructor;
import lombok.Builder;

import lombok.Data;

import lombok.NoArgsConstructor;

import org.hibernate.annotations.Creation Timestamp;

package dev.babebbu.academic.thesis.master.stats.models.entities;

143

import java.util.Date;

@Data
@NoArgsConstructor
@AllArgsConstructor
@Builder

@Entity
@Table(name = "records")
public class Record {

@Id
@Generated Value(strategy = GenerationType IDENTITY)

private int id;

@ManyToOne

@JoinColumn

private Test test;

private double inferenceTime;

private double executionTime;

private String imageFileName;

private String prediction;

private String actual;

private boolean accurate;

144

private double confidence;

private double dataTransfer;

@CreationTimestamp

private Date createdAt;

entities/Runtime.java

package dev.babebbu.academic.thesis.master.stats.models.entities;

import jakarta.persistence.Entity;
import jakarta.persistence.ld;
import jakarta.persistence.Table;
import lombok.AllArgsConstructor;
import lombok.Builder;

import lombok.Data;

import lombok.NoArgsConstructor;

@Data
@NoArgsConstructor
@AllArgsConstructor
@Builder
(@Entity
@Table(name = "runtimes")
public class Runtime {

@Id

private String id;

private String name;

private String os;

145

private String mlEngine;

entities/Test.java

package dev.babebbu.academic.thesis.master.stats.models.entities;

import jakarta.persistence.*;

import lombok.AllArgsConstructor;
import lombok.Builder;

import lombok.Data;

import lombok.NoArgsConstructor;

import java.util.Date;

import java.util.concurrent. TimeUnit;

@Data

@Builder
@NoArgsConstructor
@AllArgsConstructor
@Entity

@Table(name = "tests")

public class Test {

@Id
@Generated Value(strategy = GenerationType IDENTITY)

private int id;

private String name;

private String description;

146

@ManyToOne

private Device device;

private Integer rate;

private Date startedTime;

private Date finishedTime;

private Integer totalFiles;

private Integer totalSuccess;

private Integer totalFailed;

public void setStartedTime(long timestamp) {

startedTime = new Date(timestamp);

public void setFinishedTime(long timestamp) {

finishedTime = new Date(timestamp);

}

requests/ApplicationTypeRequest.java

package dev.babebbu.academic.thesis.master.stats.models.requests;

import lombok.Data;

@Data

public class ApplicationTypeRequest {

147

private String name;
private String type;

private String programmingLanguage;

requests/DeviceRequest.java

package dev.babebbu.academic.thesis.master.stats.models.requests;

import lombok.Data;

@Data

public class DeviceRequest {
private String id;
private String name;
private String displayName;
private String description;
private String hardware;
private String location;
private double latency;

private String environment;

requests/MLEnvironmentRequest.java

package dev.babebbu.academic.thesis.master.stats.models.requests;

import lombok.Data;

@Data
public class MLEnvironmentRequest {
private String name;

private String tier;

148

private String runtime;
private String applicationType;

b

requests/NetworkTierRequest.java

package dev.babebbu.academic.thesis.master.stats.models.requests;

import lombok.Data;

@Data

public class NetworkTierRequest {
private String name;
private String type;
private String tier;

private String description;

requests/RecordRequest.java

package dev.babebbu.academic.thesis.master.stats.models.requests;

import lombok.Data;

@Data
public class RecordRequest {

private int test;

private double inferenceTime;

private double executionTime;

private String imageFileName;

private String prediction;

149

private String actual;
private boolean accurate;
private double confidence;

private double dataTransfer;

requests/RuntimeRequest.java

package dev.babebbu.academic.thesis.master.stats.models.requests;

import lombok.Data;

@Data

public class RuntimeRequest {
private String os;
private String name;

private String mlEngine;

requests/TestRequest.java

package dev.babebbu.academic.thesis.master.stats.models.requests;

import lombok.AllArgsConstructor;
import lombok.Builder;

import lombok.Data;

import lombok.NoArgsConstructor;

@Data

@Builder
@NoArgsConstructor
@AllArgsConstructor

150

public class TestRequest {

private String name;
private String description;
private String device;
private int rate;

private long startedTime;
private long finishedTime;
private int totalFiles;
private int totalSuccess;

private int totalFailed;

repositories/ApplicationTypesRepository.java

package dev.babebbu.academic.thesis.master.stats.repositories;

import dev.babebbu.academic.thesis.master.stats.models.entities. ApplicationType;
import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.stereotype.Repository;

@Repository

public interface ApplicationTypesRepository extends
JpaRepository<ApplicationType, String> {

b

repositories/DevicesRepository.java

package dev.babebbu.academic.thesis.master.stats.repositories;

import dev.babebbu.academic.thesis.master.stats.models.entities.Device;

import org.springframework.data.jpa.repository.JpaRepository;

151

import org.springframework.stereotype.Repository;

@Repository

public interface DevicesRepository extends JpaRepository<Device, String> {

b

repositories/MLEnvironmentsRepository.java

package dev.babebbu.academic.thesis.master.stats.repositories;

import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.stereotype.Repository;

(@Repository
public interface MLEnvironmentsRepository extends

JpaRepository<MLEnvironment, String> {

}

import dev.babebbu.academic.thesis.master.stats.models.entities. MLEnvironment

b

repositories/RecordsRepository.java

package dev.babebbu.academic.thesis.master.stats.repositories;

import dev.babebbu.academic.thesis.master.stats.models.entities.Record;
import org.springframework.data.domain.Pageable;
import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.stereotype.Repository;

import java.util.List;

@Repository

public interface RecordsRepository extends JpaRepository<Record, Integer> {

152

List<Record> findAlIByTestIsNotNull(Pageable pageable);

repositories/RuntimesRepository.java

package dev.babebbu.academic.thesis.master.stats.repositories;

import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.stereotype.Repository;

@Repository

b

import dev.babebbu.academic.thesis.master.stats.models.entities.Runtime;

public interface RuntimesRepository extends JpaRepository<Runtime, String> {

repositories/TestsRepository.java

package dev.babebbu.academic.thesis.master.stats.repositories;

import dev.babebbu.academic.thesis.master.stats.models.entities. Test;
import org.springframework.data.jpa.repository.JpaRepository;
import org.springframework.data.jpa.repository.query.Procedure;
import org.springframework.data.repository.query.Param;

import org.springframework.stereotype.Repository;
import java.util. Map;
@Repository

public interface TestRepository extends JpaRepository<Test, Integer> {

}

repositories/TiersRepository.java

153

package dev.babebbu.academic.thesis.master.stats.repositories;

import dev.babebbu.academic.thesis.master.stats.models.entities.NetworkTier;
import org.springframework.data.jpa.repository.JpaRepository;

import org.springframework.stereotype.Repository;

@Repository
public interface TiersRepository extends JpaRepository<NetworkTier, String> {

b

services/StatsService.java

package dev.babebbu.academic.thesis.master.stats.services;

import com.fasterxml.jackson.databind.ObjectMapper;

import com.fasterxml.jackson.databind.PropertyNamingStrategy;

import dev.babebbu.academic.thesis.master.stats.models.QuantitativeStats;
import dev.babebbu.academic.thesis.master.stats.models.QueryResultSet;
import dev.babebbu.academic.thesis.master.stats.models. TestStats;

import dev.babebbu.academic.thesis.master.stats.models.entities. Test;

import lombok.RequiredArgsConstructor;

import org.springframework.jdbc.core.JdbcTemplate;

import org.springframework.jdbc.core.namedparam.MapSqlParameterSource;
import org.springframework.jdbc.core.simple.SimpleJdbcCall;

import org.springframework.stereotype.Service;
import java.util. Map;
@Service

@RequiredArgsConstructor

public class StatsService {

154

private final JdbcTemplate jdbcTemplate;
private final ObjectMapper objectMapper;

public TestStats getStatsByTest(Test test) {
return getStatsByTestld(test.getld());

public TestStats getStatsByTestld(int id) {

ObjectMapper caseMapper =
objectMapper.copy().setPropertyNamingStrategy(PropertyNamingStrategy. SNAKE
_CASE);

Map<String, Object> queryResult = new SimpleJdbcCall(jdbcTemplate)
.withProcedureName("GetStatsByTestld")

.execute(new MapSqlParameterSource().addValue("search id", id));

QueryResultSet resultSet = objectMapper.convertValue(
queryResult.get("#result-set-1"),
QueryResultSet.class

);

Map<String, Object> result = resultSet.get(0);

TestStats testStats = caseMapper.convertValue(result, TestStats.class);
testStats.setinference Time(QuantitativeStats
.builder()
.min(result.get("min_inference time"))
.avg(result.get("avg_inference time"))
.max(result.get("max_inference time"))

.sd(result.get("sd_inference time"))

155

build()
);
testStats.setExecutionTime(QuantitativeStats
.builder()
.min(result.get("min_e2e time"))
.avg(result.get("avg e2e time"))
.max(result.get("max_e2e time"))
.sd(result.get("sd e2e time"))
Jbuild()
);

return testStats;

services/ToolsService.java

package dev.babebbu.academic.thesis.master.stats.services;

import lombok.RequiredArgsConstructor;

import org.springframework.stereotype.Service;

import java.util.Collections;
import java.util. List;
import java.util.stream.Collectors;

import java.util.stream.Stream;

@Service
@RequiredArgsConstructor

public class ToolsService {

156

public <T> List<T> reverseColle
return stream.collect(

Collectors.collectingAndT

Collections.reverse(li

return list;

)
);
}

\
6\)

A

Stream<T> stream) {

tors.toList(), list -> {

la

T,
F

"¢

157

\ulag
13 &]b

oM
6 Appendix [
Database

158

ER Diagram

(I) description varchar(255) () mi_engine varchar(255)
() name varchar(255) (1) programming_langi) name varchar(255)
() tier varchar(255) [type Dos varchar(255)
([type varchar(255) Toid Toid varchar(255)
Tsid varchar(255)

() name

t application_type.

tier_id:id

varchar(255)
varchar(255)
varchar(255)
double
varchar(255)

() finished_time datetime(6)
[Drate int
([started_time datetime(6)
(L] tof f d int

159

Procedure: GetStatsByTestld
CREATE
definer = root@ %" procedure GetStatsByTestId(IN search id int)
BEGIN
SET SESSION sql mode =";
SELECT
tests.id AS "test id",

tests.description,

tests.started_time,

(SELECT created_at FROM records WHERE test id = search id ORDER BY
'id* DESC LIMIT 1) AS "finished time",

TIMESTAMPDIFF(SECOND, tests.started time, (SELECT created at FROM
records WHERE test id = search id ORDER BY "id° DESC LIMIT 1)) AS
"elapsed time",

CONCAT(devices.latency, " ms") AS "latency",

count(records.id) AS total records,

CONCAT(ROUND(MIN(inference _time), 2), " ms") AS
"min_inference time",

CONCAT(ROUND(AVG(inference time), 2), " ms") AS "avg inference time",

CONCAT(ROUND(MAX(inference time), 2), " ms") AS
"max_inference time",

CONCAT(ROUND(STDDEV(inference time), 2), " ms") AS
"sd inference time",

CONCAT(ROUND(MIN(execution_time), 2), " ms") AS "min_e2e time",

CONCAT(ROUND(AVG(execution_time), 2), " ms") AS "avg e2e time",

CONCAT(ROUND(MAX(execution_time), 2), " ms") AS "max_e2e_ time",

CONCAT(ROUND(STDDEV(execution_time), 2), " ms") AS "sd e2e time",

CONCAT(ROUND(AVG(execution time) - AVG(inference _time), 2), " ms") as
"average overhead",

CONCAT(ROUND(AVG/(accurate) * 100, 2), " %") as "accuracy",

CONCAT(ROUND(MIN(confidence) * 100, 2), " %") as

160

"min_confidence score",
CONCAT(ROUND(AVG(confidence) * 100, 2), " %") as
"avg confidence score",
CONCAT(ROUND(MAX(confidence) * 100, 2), " %") as
"max_confidence score",
ROUND(STDDEV(confidence) * 100, 2) as "sd_confidence score",
CONCAT(ROUND(MIN(data_transfer) / 1000, 2), " KB") as "min_file size",
CONCAT(ROUND(AVG(data_transfer) / 1000, 2), " KB") as "avg_file size",
CONCAT(ROUND(MAX(data_transfer) / 1000, 2), " KB") as "max_file size",
CONCAT(ROUND(STDDEV(data_transfer) / 1000, 2), " KB") as
"sd file size"
FROM tests
JOIN records ON tests.id = records.test id
JOIN devices ON tests.device id = devices.id
WHERE test _id = search_id;
END;

161

g‘uraﬁzb

O
O
6 Appendix F
le — Keras Image

train.py

162

import tensorflow as tf
from tensorflow import keras
from keras import layers

from keras.callbacks import ModelCheckpoint, EarlyStopping

image size = (180, 180)
batch size = 64
epochs =50

train_ds, val ds = tf.keras.utils.image dataset from directory(
"Petlmages-Cleaned",
validation_split=0.05,
subset="both",
seed=1337,
image size=image size,
batch size=batch_size,

)
import matplotlib.pyplot as plt

classes = ["Cat", "Dog"]

plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
for 1 in range(9):
ax = plt.subplot(3, 3,1+ 1)
plt.imshow(images[i].numpy/().astype("uint8"))
plt.title(classes[int(labels[i])])
plt.axis("off")

163

data_augmentation = keras.Sequential(
[
layers.RandomFlip("horizontal"),

layers.RandomRotation(0.1),

)
plt.figure(figsize=(10, 10))
for images, in train_ds.take(1):
for i in range(9):
augmented images = data augmentation(images)
ax = plt.subplot(3, 3,1+ 1)
plt.imshow(augmented images[0].numpy().astype('uint8"))
plt.axis("off")
augmented train_ds = train_ds.map(
lambda x, y: (data_augmentation(x, training=True), y))
Apply "data_augmentation” to the training images.
train_ds = train_ds.map(
lambda img, label: (data augmentation(img), label),
num_parallel calls=tf.data. AUTOTUNE,
)
Prefetching samples in GPU memory helps maximize GPU utilization.
train_ds = train_ds.prefetch(tf.data. AUTOTUNE)
val ds = val_ds.prefetch(tf.data. AUTOTUNE)
def make model(input shape, num_classes):

inputs = keras.Input(shape=input_shape)

Entry block

x = layers.Rescaling(1.0 / 255)(inputs)

x = layers.Conv2D(128, 3, strides=2, padding="same")(x)
x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

164

previous_block activation =x # Set aside residual

for size in [256, 512, 728]:
x = layers.Activation("relu")(x)

x = layers.SeparableConv2D(size, 3, padding="same")(x)

x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

x = layers.SeparableConv2D(size, 3, padding="same")(x)
x = layers.BatchNormalization()(x)

x = layers.MaxPooling2D(3, strides=2, padding="same")(x)

Project residual

residual = layers.Conv2D(size, 1, strides=2, padding="same")(

previous_block activation
)
x = layers.add([x, residual]) # Add back residual

previous_block activation =x # Set aside next residual

x = layers.SeparableConv2D(1024, 3, padding="same")(x)
x = layers.BatchNormalization()(x)

x = layers.Activation("relu")(x)

x = layers.Global AveragePooling2D()(x)
if num_classes == 2:

activation = "sigmoid"

units = 1
else:

activation = "softmax"

165

units = num_classes

x = layers.Dropout(0.5)(x)
outputs = layers.Dense(units, activation=activation)(x)

return keras.Model(inputs, outputs)

model = make model(input_shape=image size + (3,), num_classes=2)

keras.utils.plot_model(model, show shapes=True)

callbacks = [
ModelCheckpoint("checkpoints/save _at {epoch}.keras"),
EarlyStopping(monitor='val accuracy', patience=8, restore best weights=True,

verbose=1)

]

model.compile(
optimizer=keras.optimizers.legacy.Adam(1e-3),
loss="binary_crossentropy",
metrics=["accuracy"],

)

history = model.fit(
train_ds,
epochs=epochs,
callbacks=callbacks,
validation data=val ds,

)

from datetime import datetime

current_time = datetime.now().strftime("%Y %m%d_%H%M%S")

tf.keras.saving.save model(model, "models/keras/" + current time + ".keras",

overwrite=True, save format="keras")

166

tf.keras.saving.save model(model, "models/tensorflow/" + current_time,
overwrite=True, save format="tf")
tf.keras.saving.save_model(model, "models/hdf5/" + current time + ".hdf5",
overwrite=True, save format="h5")
Verity
img = keras.utils.load_img(

"Petlmages/Cat/6779.jpg", target_size=image size
)
img_array = keras.utils.img_to_array(img)

img_array = tf.expand_dims(img_array, 0) # Create batch axis

predictions = model.predict(img_array)
score = float(predictions[0])

print(f"This image is {100 * (1 - score):.2f}% cat and {100 * score:.2f}% dog.")

summarize history for accuracy
print(history.history.keys())
plt.plot(history.history['accuracy'])
plt.plot(history.history['val accuracy'])
plt.title('Model Accuracy')
plt.ylabel('Accuracy')
plt.xlabel('Iteration")
plt.legend(['Training', 'Validation'], loc="upper left')
plt.show()

summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val loss'])
plt.title('Model Loss')
plt.ylabel('Loss")

plt.xlabel('Iteration')

167

plt.legend(['Training', 'Validation'], loc="upper left')
plt.show()
accuracy min = None
accuracy min_iteration = None
accuracy max = None
accuracy max_iteration = None
for 1, element in enumerate(history.history['accuracy']):
ifi==0:
accuracy min = element
accuracy max = element
else:
if element < accuracy min:
accuracy min = element
accuracy min_iteration = i+1
if element > accuracy max:
accuracy max = element
accuracy max_iteration = i+1

print(str(i+1) + " " + ' {round(element*100, 1)} %")

print(str(accuracy max_iteration) + " " + " {round(accuracy max*100, 1)}%")

val accuracy min = None
val accuracy min_iteration = None
val_accuracy max = None
val _accuracy max iteration = None
for 1, element in enumerate(history.history['val_accuracy']):
ifi==0:
val accuracy min = element
val accuracy max = element

else:

168

if element < val accuracy min:
val accuracy min = element
val_accuracy min_iteration = i+1
if element > val accuracy max:
val accuracy max = element
val accuracy max_iteration = i+1

print(str(i+1) + " " + f'{round(element*100, 1)} %")

print(str(val _accuracy max_iteration) +" " + f" {round(val accuracy max*100,

1)}%")

169

\ulag
13 &]b

O
.
6 Appendix C
S pde — TensorRT M

convert.py

170

import tensorflow as tf
from tensorflow.python.compiler.tensorrt import trt_convert as trt

import numpy as np

SAVED MODEL DIR = "models/outputs/tensorflow/20231129 053542"
OUTPUT SAVED MODEL DIR =
"models/outputs/tensorrt/20231129 053542 {p32"

Instantiate the TF-TRT converter

converter = trt. TrtGraphConverterV2(
input_saved model dir=SAVED MODEL DIR,
precision mode=trt. TrtPrecisionMode.FP32

Convert the outputs into TRT compatible segments
trt func = converter.convert()

converter.summary/()

Define expected input size
Input: 1 Image at a time, Image Size and Color Space = 180x180xRGB
def input_fn():

yield [np.zeros((1, 180, 180, 3)).astype(np.float32)]

converter.build(input_fn=input fn)

converter.save(output saved model di=OUTPUT SAVED MODEL DIR)

171

g‘uraﬁzb

\ :
NV
Y Appendix
d P
Publication

172

The research article has been published in 2024 International Symposium on
Parallel Computing and Distributed Systems (PCDS) and added to IEEE Xplore with
DOI 10.1109/PCDS61776.2024.10743722 DOI
https://doi.org/10.1109/PCDS61776.2024.10743722 or

accessible via link at

IEEE Xplore at

https://ieeexplore.ieee.org/document/10743722

Performance Analysis of Image Classification
between Edge and Cloud Computing

Natthasak Vechprasit™
Faculty of Information Technology
Thai-Nichi Institute of Technology
Bangkok, Thailand
ve.natthasak_st@mes.tni.ac.th

Annop Monsakul
Faculty of Engineering and Technology
Panyapiwat Institute of Management
Nonthaburi, Thailand
annopmon@pim.ac.th

Pramuk Boonsieng
Faculty of Information Technology
Thai-Nichi Institute of Technology
Bangkok, Thailand
b.pramuk@tni.ac.th

2024 International Symposium on Parallel Computing and Distributed Systems (PCDS) | 979-8-3503-4965-8/24/$31.00 ©2024 |EEE | DOI: 10.1109/PCDS61776.2024.10743722

Abstract—Image classification has become a major application
in the AI era for connecting the physical and digital worlds.
However, it requires intensive graphic processing power. IoT and
Edge Computing have b popul approaches for
distributing and offloading the workload from the cloud to the
edge. Many edge devices are powered by an energy-efficient
processor that can’t i ive workloads, but some may be
able to. In this paper, we studied the overview of image
classification implementation on edge and cloud computing and
analyzed the performance to reveal the opportunity to implement
a proper system architecture. The edge and cloud computing
environments studied in this paper are a smartphone and a cloud
GPU i with ple applicati to simulate real 1d
scenarios. The performance is based on the datasets and the
processing environment comprising three factors: ML runtime,
hardware, and network. Resulting in six factors: inference time,
end-to-end execution time (including network delays), accuracy,
confidence score, resource usage, and data transfer.

K, T T Classifi

2y 74 Cloud
Computing, Performance Analysis

Edge Ce

'P 'S

I. INTRODUCTION

Image classification is the adoption of deep learning
techniques to enable computers to learn and analyze images
automatically. It plays an important role in connecting the
computer with the physical world. It advances development in
many areas such as agriculture [12][13][23], industrial,
manufacturing, security [30], smart things [30][31], healthcare
[14][24][25], and retail [26][27][28]. But it requires intensive
GPU processing power.

Most applications were designed to execute data processing
on the cloud, including the image classification process. Thus,
this leads to the expensive and/or prolonged subscription cost
for GPU instances or computer vision API on the public cloud
[16][41][42][43]. The network bandwidth is also needed for
uploading the image, which is larger than plain text, even
though the images were pre-processed by resizing and
compression.

By using cloud computing to process, even though cloud
computing is a high-availability cluster, the budget of the
application owner may also be limited. This results in
insufficient computation resources and limited processing
power or causes a bottleneck when high-demand throughput

979-8-3503-4965-8/24/$31.00 ©2024 IEEE

occurs. In some cases, the image should not be uploaded to the
internet because of privacy concerns.

Nowadays, modern energy-efficient devices are viable for
image classification due to their embedded GPU on the SoC
(System-on-Chip). For instance, the iPhone 15 Pro series [1]
and iPad Pro 6" generation [2].

With the emergence of Edge Computing Devices,
offloading the image classification process from the cloud to
the edge is a viable idea that mitigates the budget needs, reduces
cloud computing workloads, reduces network bandwidth,
lowers running costs, and increases privacy.

Even though the technical specifications of edge devices
reveal the potential computational resources, it is frustrating
and challenging to choose whether to offload image
classification from the cloud to the edge or deploy it on the
cloud.

We hypothesized that processing at the edge might perform
better than processing on the cloud due to the hardware, ML
framework, and lower network delays. To reveal the practical
difference, this paper studied the performance between
processing image classification at the edge and the cloud in six
factors regarding inference time, end-to-end time, accuracy,
confidence score, resource usage, and data transfer, structured
as follows. In Section II, the related works were reviewed. The
system overview, the chosen hardware, datasets, and image
classifiers are presented in Section III, the six factors of
performance results are presented in Section IV, and the
conclusion and discussion are in Section V and Section VI,
respectively.

Our primary contributions are the performance results of
image classification in six factors mentioned above on the
Apple iPhone together with Apple Core ML, which is
considered an edge computing environment, and a cloud GPU
instance (virtual machine) of NVIDIA A100 GPU together with
NVIDIA TensorRT, which is considered a cloud computing
environment. The results showed that processing at the edge is
viable and better than the cloud. The results will be beneficial
for designing an image classification application or
architecture.

The novelty of this work is that the ML framework,
hardware, and networks are considered a processing
environment for comparison because of the proprietary

Authorized licensed use limited to: Naresuan University provided by UniNet. Downloaded on May 02,2025 at 09:24:06 UTC from IEEE Xplore. Restrictions apply.

optimization of the hardware, as represented in the conceptual
framework in Fig 1.

== Processing
Environment
ML Framework
Hardware
Dependent Variable: Control Variable
Network
Performance —_— Dataset

Dependent Variable

Inference Time > ‘ mb's:m
[oopendot vt | [——
| Resource Usage (—l—) | DataTransfer

|
|
Fig. 1. The Conceptual Framework

II. LITERATURE REVIEW

A. Edge Computing

Edge computing is the evolution of technologies that allow
computation to be performed at the edge of the network (which
might be within the Local Area Network). For example, a
smartphone, tablet, single board computer (SBC), and various
Internet of Things (IoT) devices can be nodes for edge
computing. Edge computing can perform computing
offloading, data storage, caching, processing, etc., as much as
an edge device or edge node can perform [3].

Examples of edge computing applications are Computer
vision, natural language processing (NLP), network functions,
Internet of Things (IoT), augmented reality (AR), and virtual
reality (VR) [4].

B. Image Classification

Image classification is a computer vision task of assigning
alabel or class to an entire image. It can be done by using a type
of artificial neural network that is used for image recognition
and tasks that involve the processing of pixel data called
Convolutional Neural Network (CNN). An image classifier
model can be created by using Create ML (an application from
Apple to create a Core ML model) [5], TensorFlow (an end-to-
end opensource platform for machine learning) [6], Keras (a
deep learning API written in Python and capable of running on
top of either TensorFlow, Pytorch) [7], and Pytorch (an
optimized tensor library for deep learning using GPUs and
CPUs) [8].

C. Running Machine Learning Model

Hardware in edge computing is mostly designed for power
efficiency as the priority. But as time passed by, the

performance has improved over time. However, some of them
have a GPU that embeds an optimization for running computer
vision tasks and neural network tasks. For instance, Apple has
proprietary technology for running machine learning models
called “Core ML” [9]. It provides API for software developers
to implement machine learning models to their application to
run a machine learning model using GPU or NPU (Neural
Processing Unit). Google also has an SDK called “ML Kit” [10]
for running machine learning models on mobile devices, which
supports both iOS and Android, whereas some Nvidia GPUs
have a bunch of Tensor Cores for handling machine learning
workloads and a software development kit that facilitates high-
performance machine learning inference called “TensorRT”

[1].

D. Survey of Image Classification on Edge Computing and

Performance Analysis

Many researchers proposed the application of image
classification on edge computing. Edge computing can be any
device located at the edge of the network ranging from an
energy-efficient device, a low-power device, an energy-
efficient device with embedded GPU, a smartphone, to a high-
end server.

Monburinon et al. proposed Deployment Environment
Aware Learning (DEAL) framework to optimize model
accuracy for detecting animals based on the edge device
deployment location. They deployed a localized image
classification model on Raspberry Pi 3 Model B to prevent
animals from intruding into the agriculture field by classifying
images from a camera. Their proposed system achieves a
minimum of 0.32 seconds of inference time, 90% top-1
accuracy, and 96% top-3 accuracy, and the data transfer is
reduced [12].

Zualkernan et al. evaluated the performance of various
image classification models, including Inception V3,
MobileNet V2 [32], ResNet-18 [34], EfficientNet Bl [35],
DenseNet 121 [36]. Their results showed that Xception was the
best image classifier model and was chosen to be deployed on
edge devices to test the performance. They converted the model
to TensorFlow Lite format to deploy on Rasberry Pi, Google
Coral, and Nvidia Jetson Nano. And they also converted to
TensorRT to deploy on Jetson Nano. The results showed that
Nvidia Jetson Nano with TensorRT produced only 0.28 seconds
of inference time which is the best in the test and a lot faster
compared to other tested devices [13].

Charteros et al. developed an Android application that lets
patients take a snapshot of their breast, and the application will
analyze the breast cancer by a CNN model integrated within the
application. They evaluated their application on Huawei Y6
Prime as a low-end device and Huawei Mate 20 Pro as a high-
end device. They achieved around 20 seconds of inference time
on Huawei Y6 Prime and around 12-14 seconds of inference
time on Huawei Mate 20 Pro. And their model also achieved
98% accuracy in the identification of breasts and nipples [14].

Reza et al. evaluated the inference performance of several
popular pre-trained convolutional neural networks (CNN)
models, namely MobileNet V1 [33], MobileNet V2 [32], and

173

Inception V3 [37], on three edge computing devices: NVIDIA
Jetson TX2, NVIDIA Jetson Nano, and Google Edge TPU [15].

The researchers from ETH Zurich, Google, Samsung,
Huawei, Qualcomm, MediaTek, and Unisoc published an
article that contains tables representing benchmarks of Android
smartphones in the market in 2019. The benchmarks consist of
the inference time performance of MobileNet v2 [32],
Inception-ResNet [39], SRCNN [40], VGG-19 [38], and DPED
[29].

III. METHODOLOGY

The researcher evaluated the performance based on the
conceptual framework mentioned in the prior section,
developed a simulation system as shown in Fig. 2, and proposed
a four-step method as defined in the list below.

1) Environment Setup

2) Dataset Preparation

3) Creating Image Classifier Model

4) Image Classification Application and Runtimes

o
|
— - |
é__L‘” T~ OFastAP! I S f@ i
| ¢fy] o predetont— & Prediction — |
|
[
API Client ‘ API Application TensorRT Model |
{ Edge (Phone 15 ProMax) |
& -
“ . preccion
\mage 108 Application CoreML Model

Fig. 2. System Overview of Image Classification on Edge and Cloud Using
Customized Model

A. Environment Setup

For the edge computing environment, the Apple iPhone 15
Pro series, together with Apple Core ML, was chosen to
represent a mobile application scenario in which image
classification is executed on the device. It was chosen to
represent the smartphone category because its SoC seems to
have sufficient graphic processing power and a native ML
runtime environment, which the researcher anticipates will
demonstrate strong performance because of its proprietary
optimization.

For the cloud computing environment, the lowest plan of an
Nvidia A100 Cloud GPU instance from Vultr [16] (4 GB out of
80 GB of Nvidia A100 GPU Memory) together with TensorRT
was chosen to represent a web service or an API application
deployed on a remote server that receives the image from a
remote client to classify. It was chosen to represent how well a
budget-friendly cloud GPU instance can perform.

Table I compares the configuration and specification of
edge and cloud computing environments for image
classification performance evaluation.

TABLE L.

ENVIRONMENT SETUP

C Environment
i Edge Cloud
. . Vultr GPU Instance
Hardware / Device iPhone 15 Pro Max Nvidia A100 (4 GB)
Intel Xeon (Vultr
Processor / SoC Apple A17 Pro Generic)
CPU Cores /vcpy | 2 Performance cores 1vCPU
4 Efficiency cores
Memory 8 GB (Unified) 6 GB
GPU Apple A17 Pro Nvidia A100
GPU Memory 8 GB (Unified) 4GB
. . Nvidia NGC
Operating System i0S 17 (Ubuntu Linux 22.04)
Application Swift REST API
Network Not Required FTTx Broadband
ML Runtime Core ML TensorRT

B. Dataset Preparation

In this paper, two sets of data featuring images of dogs and
cats were used.

The first dataset is the Kaggle: Cats VS Dog dataset [17]. It
is used for training and validation, It contains 12,491 images of
cats and 12,470 images of dogs. This dataset was chosen for
training and validation because its photo consists of mixed
backgrounds, postures, and image sizes. It also has plenty of
images for training and validation. Fig. 3 represents the sample
data of the training and validation dataset.

Another dataset is Animal Faces-HQ (AFHQ) [18]. It is
used for testing. It consists of high-quality images. The images
are 512-by-512 pixels resolution. Only images of cats and dogs
in the training subset were chosen. Each class contains about
5,000 images. This dataset was chosen because there was a high
number of photos to simulate to gain a stable statistic, and its
quality is consistently good. Fig. 4. represents the sample data
of the testing dataset.

C. Creating Image Classifier Model

The model varies according to the environment setup. Core
ML was used in the edge environment, while TensorRT was
used in the cloud environment because of the proprietary
optimization of hardware and ML framework.

Our Core ML image classifier model was created using
Create ML, an application that allows developers to create a
customized model via the user interface. The validation dataset
was randomly partitioned by 5% based on Core ML default.
Image Feature Print V2 [19], a feature extractor provided by
Create ML, was applied. The target iteration was set to 25
iterations. No augmentations were applied.

Our TensorRT image classifier model was created using a
small Xception network [23]. The target iteration was set to 50
iterations with an early stop applied. The training will stop if
the model performance stops improving within the next 8
iterations and the best iteration is restored to be the final output.
The training set was augmented by random horizontal flips and
random rotation. The validation dataset was partitioned by 5%,
which is similar to our Core ML model. Keras outputs a model
in TensorFlow format, and it needs to be converted to a
TensorRT model format to fully take the benefits from the
Nvidia GPU driver and Tensor Core to accelerate the inference
time.

Table II represents the configuration for the training for
each environment.

The main goal of both image classifier models is to classify
an input image into one of two classes, which are cat and dog.

TABLE II. TRAINING CONFIGURATION
i Training Configuration
Descripgiog Core ML Keras
Target Iteration 25 50
Early Stop Patient Auto] 8
Validation Split Rate Auto (5%) [5%
" - Random Flip

Augmentation None e, e .

D. Image Classification Applications and Runtimes

For the edge environment, a Swift [20] application was
developed to run the image classification on iOS. Fig. 5.
illustrates the activity or flow of the iOS application. The
application lets the user choose a photo album that contains the
testing dataset. After the user chooses a photo album, all the
photos or images in the album and an output handler function
are passed to the Core ML model to infer and handle the
prediction results.

For the cloud environment, a web service REST API [44]
application was developed using FastAPI [21], a fast and
lightweight web application server API written in Python. Fig.
6 illustrates the activity or flow of the API application. The
application receives the image uploaded by a user and passes it
to the TensorRT model to infer and return the prediction results.

(User

Choose
Album
K
Contentview
Start J Has Photo? F End
T
T
Load Image Update View State
| CoreML Model Prediction Handler
Classify Logging Result Processing

Fig. 5. Activity diagram of the iOS application.

FastAP|

start Accept Prediction End
Uploaded Image Result

(TensorRT Model

Classify
Fig. 6. Activity diagram of the API application

IV. EXPERIMENT, PERFORMANCE EVALUATION, AND RESULTS

There are six factors of performance studied in this paper
that would reveal the characteristics of each environment.
Those are:

1) Inference Time

2) End-to-End Execution Time
3) Accuracy

4) Confidence Score

5) Resource Usage

6) Data Transfer

Fig. 7. And Fig. 8. illustrate the overview of how the
experiment was set up and how the prediction results were

sampled.
« I
~
-
User ~
T

1.UserRuna CIassafy Event 4. Store Result

L 2.ML Reqwsl
i0s Appllcatlon CoreML Model

|
3 Prediction Result J

Fig. 7. Result gathering flow for the edge application.

[vser \

LUserRunaClassfy Event 6. Stre Result

—— 2. HTTP Request —>
t—‘ API Client A

& 2 nrtenesonse — Application ¢~ & peccionresst — Model

(((0

— 3 wLreest — aneornt

Fig. 8. Result gathering flow for the cloud application.

A. Inference Time

Inference Time is the duration when the image classifier
begins classifying the image and ends when the results are
returned.

175

For the edge environment, a timestamp was captured after an
image was loaded and before passing to the classify function,
and another timestamp was captured after the model predicted
and finished handling the results. Then, the difference between
the two captured timestamps was calculated and converted to
milliseconds.

For the cloud environment, a timestamp was captured once
the API application received the uploaded image, and another
timestamp was captured once the model returned the prediction
results. Then, the difference between the two captured
timestamps was calculated and converted to milliseconds.

Table III represents the minimum, average, maximum, and
standard deviation of edge and cloud computing inference time
measured in milliseconds. Lower is better. The image used for
the evaluation is Animal Faces-HQ. The standard deviation
(S.D.) in the table indicates the amount of variation in the
expected inference time. Fig. 9 represents a comparison chart
of inference time between edge and cloud.

B. End-to-End Execution Time

End-to-end execution Time is the duration when the system
receives the user’s input image, passes it to the image classifier
to classify, waits for the prediction returns, and ends. This
includes the network delay, if applicable.

For the edge environment, a timestamp was captured once
the image began to load, and another timestamp was captured
once the results were printed. The difference between the two
captured timestamps was calculated and converted to
milliseconds.

For the cloud environment, an API client was developed by
using Java version 17 (Amazon Corretto 17 aarch64) to run the
test. The client invokes the API by making HTTP requests to
the API application. This approach simulates the real-world
application that submits data to process on the remote server.
The cloud GPU instance was deployed in Tokyo, Japan, based
on the availability region of the cloud service provider, while
the client initiated HTTP requests from Bangkok, Thailand. The
distance between these two cities is around 4,600 km. The
network latency was approximately 100 (+1) milliseconds over
the FTTx broadband connection. The latency was roughly
measured by a ping test with 10 intervals. A timestamp was
captured once the API client executed an HTTP request, and
another timestamp was captured once the API client received
an HTTP response that contained the prediction results. Then,
the difference of the two captured timestamps was calculated
and converted to milliseconds. All of the images were resized
from 512-by-512 pixels to 256-by-256 pixels before being
uploaded to the cloud.

Table IV shows the minimum, average, maximum, and
standard deviation of the end-to-end execution time of edge and
cloud computing measured in milliseconds. Lower is better.
The image used for the evaluation is Animal Faces-HQ. The
standard deviation (S.D.) in the table indicates the amount of
variation in the expected inference time.

Fig. 10 represents a comparison chart of end-to-end
execution time between edge and cloud. We also compare it
with inference time, represented in Fig. 11.

176

TABLE III. INFERENCE TIME RESULTS
Environment Results (milli: ds — lower is better)
Min Average | Max | SD. |
Edge 5.02 ms 1630ms | 117530ms | 11.74ms |
Cloud 1.12 ms 1.44 ms 16.59 ms 0.47 ms
TABLEIV. END-TO-END EXECUTION TIME RESULTS
Environment Results (milliseconds — lower is better)
Min Average | Max S.D.
Edge 5.05 ms 16.47 ms 117535ms | 11.75 ms
Cloud 188 ms 289.16 ms 583 ms 53.44 ms

Average Inference Time
Edge m
Cloud mmm
1 10 100
m Time (ms)
Fig. 9. Comparison of Average Inference Time between Edge and Cloud
Average End-to-End Execution Time (ms)
Edge I
Cloud |

1 10 100 1000

m Time (ms)

Fig. 10. Comparison of Average End-to-End Execution Time between Edge
and Cloud

Comparison between average of inference time
and average of end-to-end execution time.

Inference Time —
End-to-End Time | ————

1 10 100 1000

mEdge mCloud

Fig. 11. Comparison of Inference Time and End-to-End Execution Time
between Edge and Cloud

C. Accuracy

Table V shows the iterations or epochs configuration for
image classifier model training. The maximum iterations for the
Core ML model were configured to 25 iterations, but the model
converged at iteration 11, as also visualized in Fig. 12. The
maximum iterations for training with Keras were configured to
50 iterations, and the early stop patience was configured to
observe for 8 continuously unimproved iterations. The

Xception model trained using Keras was converged at iteration
34, as also visualized in Fig. 13.

Table VI shows the training, validation, and testing
accuracy of both image classifiers, as expressed below in (1).

Correct Prediction

Accuracy =
Y All Prediction

1

The result is Core ML model achieved 99.74% testing
accuracy, which is better than the Keras Xception model, which
achieved 95.46% testing accuracy.

TABLE V. TRAINING RESULTS
ML Framework Iterations / Epochs
Max Convergence
Core ML | 25 11

Keras 50 34

TABLE VL. TRAINING, VALIDATION, AND TESTING ACCURACY
ML Framework | Training | Validation Testing

Core ML 99.0% 98.4% 99.74% |
Keras | 97.7% 96.7% 95.46% |

© Traning Accuracy @ Vabdation Accuracy
99.0% 98.4%

o
Accuracy neratons s

Fig. 12. Core ML Model Training and Validation Accuracy

Model Accuracy

—— Training
~—— Validation \/\W\
0.9

0.8

Accuracy

0.7

0.6

0 10 20 30 40
Rteration

Fig. 13. Keras Model Training and Validation Accuracy

Tables VII, VIII, and IX show the confusion matrix of the
models, and Table X shows the model's Precision, Recall, and
F1-Score, as expressed below in (2), (3), and (4), respectively.

True Positives

Precision = — — x 100 2)
True Positives+False Positives

True Positives 100 3)

Recall = — -
True Positives+False Negatives

Fl — 2+Precision+Recall x 100 (4)

Precision+Recall

TABLE VII. CORE ML MODEL CONFUSION MATRIX
Predicted Class
Actual Class Dog Cat Total
Dog 4718 21 4739
Cat 4 5148 5153
TABLE VIII. CORE ML MODEL PERFORMANCE
al Core ML Performance
s Precision Recall F1-Score
Dog 99.92% 99.56% 0.997
Cat 99.59% 99.92% 0.998
TABLE IX. KERAS MODEL CONFUSION MATRIX
[, Predicted Class
Actual Class Dog Cat Total
Dog 4421 318 4739
Cat 131 5022 5153
TABLE X. KERAS MODEL PERFORMANCE
Class Keras Performance
Precision Recall F1-Score
Dog 97.12% 93.29% 0.952
W NCat 94.04% 97.46% 0.972

D. Confidence Score

Table XI represents the minimum, average, maximum, and
standard deviation of the confidence score of the inferences.

TABLE XI. CONFIDENCE SCORE STATS
Enviegnment Confidence Score Stats
Min Average Max S.D.
Edge 50.34% 99.9% 100% 1.67% ‘
Cloud 50.03% | 94.95% 100% 10.06% |

E. Resource Usage

The resource usage of the edge application in Table XII was
monitored by Xcode while running the iOS application that
runs the Core ML image classifier model. The gathered
resource usage that Xcode provided includes CPU, Unified
Memory, and Energy Impact.

The resource usage of the cloud application in Table XIII
was monitored by monitoring tools available in Ubuntu Linux,
such as htop, Cockpit, and nvidia-smi. The CPU, Memory, and
GPU Memory usage were gathered. The energy impact value is
inaccessible from inside the GPU instance.

TABLE XII. RESOURCE USAGE OF EDGE APPLICATION
Resource | Usage
CPU | 14~ 17%
Unified Memory 100 ~ 400 MB
Energy Impact High ~ Very High
TABLE XIII. RESOURCE USAGE OF CLOUD APPLICATION
Resource Usage
CPU 18 ~ 38% (of 1 vCPU)
Memory
GPU Memor 1,765 MB
Energy Impact Not Applicable

F. Data Transfer

The data transfer was statistically measured by the size of
the images used for testing (the AFHQ dataset) but did not
include the HTTP payload and other overheads. The images
uploaded to the cloud are high-quality JPEGs resized to 256-
by-256 pixels, but the original size was 512-by-512 pixels. The
color profile is sSRGB IEC61966-2.1.

Table XIV shows the minimum, average, maximum, and
standard deviation of the size of the images of the AFHQ
dataset.

TABLE XIV. JPEG FILE SIZE
Resolution | Image Size (Kilobytes)
(pixels) Min Average Max S.D.
256 x 256 3.49 13.74 32.46 342
512x512 13.95 42.32 112.68 12.05

V. CONCLUSION

In this paper, we simulated the environments and
applications of image classification on edge and cloud
computing based on hardware, ML framework, and network to
evaluate and analyze the performance, including inference
time, end-to-end execution time, accuracy, confidence score,
resource usage, and data transfer.

We found that the inference time of image classification on
the cloud was faster than at the edge. However, the end-to-end
execution time of image classification at the edge was faster
than the cloud because, at the edge, the network delays were
eliminated. In our case, the distance between the application
and the cloud significantly impacts the propagation delay,
which leads to higher execution time in the cloud environment.
The cloud GPU instance was running in Tokyo while our
application was running in Bangkok. The network delay
measured by the ping test was 100 (+1) milliseconds. Thus,
executing image classification at the edge is significantly faster.
The size of data uploaded to the cloud has no significant impact
on high-speed internet connections such as FTTx, broadband,
and 4G/5G cellular networks (without a Fair-Usage Policy or a
bandwidth limit policy applied).

The accuracy of the image classifier model created using
Core ML is slightly greater than the small Xception network
model created using Keras. Based on testing, Core ML has
99.75% accuracy, and Keras Xception has 95.46%. The average
confidence score of both models was 99.9% and 98.0%,
respectively. This is because Core ML works best with images
of real-world objects since it has an image feature extractor pre-
trained by millions of images, and the datasets used in this work
are also composed of common real-world objects.

We also measured the resource usage on edge devices and
found that it highly impacts energy.

VL. DISCUSSION

Offloading image classification to the edge eliminates the
network delays required for federating data to process on the
cloud (or the remote server). This makes image classification
faster, which is impactful for time-critical applications. It also
reduces cloud resources and subscription costs.

If the cloud is close to the application, for instance, if the
cloud and the application were in the same city and connected
via FTTx, the network propagation delay might range from 1 to
10 ms, leading to an insignificant difference in end-to-end
execution time between the edge and the cloud. However,
offloading image classification to the edge offers the benefit of
cloud resource reduction while still maintaining the
application's speed and experience.

When considering offloading the image classification to the
edge, the performance and availability of the edge devices, the
scenarios, and the use cases must be considered.

Besides the execution speed, the model accuracy must also
be considered. Our experiment dataset was controlled by real-
world dog and cat images, so Core ML has an advantage.
However, the model accuracy must be re-evaluated every time
the dataset changes.

Inference time and end-to-end execution time significantly
impact the speed of the image classification system or
application and user experiences. Accuracy affects the
correctness of prediction. The confidence score could be used
as a threshold in the application to display the prediction label
confidently. Resource usage shows how much resource the
image classification consumed, including CPU, memory, and
energy, which will be related to the power consumption. Data
transfer impacts how much network bandwidth will be used.

VII. FUTURE WORKS

We look forward to bringing more environments into
account to make a wider analysis. Those environments we are
willing to analyze include the representative of Android
smartphones with ML Kit [10] running TensorFlow Lite [45],
the Nvidia Jetson series [46] with TensorRT [11] as a
representative of Fog Computing [47][48][49][50]
environment, and/or other GPU or devices that may be related.
Also, the load testing and stress testing of Image Classification
applications on Fog Computing and Cloud Computing are
worth evaluating because they will reveal how much the
devices can handle and what will be affected.

ACKNOWLEDGMENT

This research work is supported by the Artificial
Intelligence & Internet of Things Research Laboratory under
the administration of Sarayut Nonsiri, Ph.D., Faculty of
Information Technology, Thai-Nichi Institute of Technology.

REFERENCES

[1] iPhone 15 Pro — Technical Specifications.
ort.apple.com/kb/SP903?locale=en_US

[2] iPad Pro 12.9-inch (6" generation) — Technical Specifications.

[3] W.Shi,J. Cao, Q. Zhang, Y. Li, L. Xu, “Edge Computing: Vision and
Challenges”, IEEE Internet of Things Journal, Vol. 3, No. 5, p.638,
October 2016.

[4] Jiasi Chen and Xukan Ran. “Deep Learning With Edge Computer: A
Review”. Proceedings of the IEEE, Vol. 107, No.8, p.1655-1674. August
2019.

[5] Create ML. https:/developer.apple.com/machine-learning/create-ml
[6] TensorFlow. https://www.tensorflow.org/
[7] Keras. https:/keras.io

178

[8]
[9]
[10]
(1]
[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]
[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

311

[32]

PyTorch. https://pytorch.org
developer.apple.com/machine-learning/core-ml/

Core ML. https:
ML Kit. https:
TensorRT. https:

N. Monburinon, S. Zabir, N. Vechprasit, S. Utsumi, N. Shiratori., “A
Novel Hierarchical Edge Computing Solution Based on Deep Learning
for Distributed Image Recognition in [oT Systems”. 4" International
Conference on Information Technology (InCIT), p.294-299. October
2019.

I. Zualkerman et al., “An IoT System Using Deep Learning to Classify
Camera Trap Images on the Edge”. Computers 2022, 11, 13. January
2022.

E. Charteros and I. Koutsopoulos, “Edge Computing for Having an Edge
on Cancer Treatment: a Mobile App for Breast Image Analysis”. 2020
IEEE International Conference on Communications Workshops (ICC
Workshops). June 2020.

S. Reza, Y. Yan, X. Dong, L. Qian, “Inference Performance Comparison
of Convolutional Neural Networks on Edge Devices”. 6" EAI
International Conference,” SmartCity360°, LNICST 372, pp.323-355,
2021

Vultr A100. https://www.vultr.com/es/news/Affordable-Cloud-VM:s-
Accelerated-with-NVIDIA-GPUs

developers.google.com/ml-kit

developer.nvidia.com/tensorrt

Microsoft and PetFinder.com Kaggle Cats and Dogs Dataset.
https://www.kaggle.com/datasets/karakaggle/kaggle-cat-vs-dog-dataset

[33]

[34]

[35]

[36]

[37]

[38]

179

the IEEE Conference on Computer Vision and Pattern Recognition, pages
4510-4520, 2018.
A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, H. Adam, “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications™.
https://doi.org/10.48550/arXiv.1704.04861
He K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image
ition. In Proceedings of the IEEE C on Computer Vision
and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June
2016; pp. 770-778.
Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks. In Proceedings of the 36th International
Conference on Machine Learning, Long Beach, CA, USA, 9-15 June
2019; Chaudhuri, K., Salakhutdinov, R., Eds.; PMLR: Cambridge, MA,
USA, 2019; Volume 97, pp. 6105-6114.
G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, "Densely
Connected Convolutional Networks," in Proceedings of the [IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp- 2261-2269. DOL: 10.1109/CVPR.2017.243
C. Szegedy, V. Vanhoucke, S. Toffe, J. Shlens, and Z. Wojna,
"Rethinking the Inception Architecture for Computer Vision," in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 2818-2826. DOI:
10.1109/CVPR.2016.308

Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. Accurate image

Y. Choi, Y. Uh, J. Yoo, J. Ha, “StarGAN v2: Diverse Image Syntk

for Multiple Domains”. Pi dings of the IEEE C on

Computer Vision and Pattern Recognition, 2020.

Image Feature Print V2.

https:/devel apple.com/di ion/Create

MLcomponents/imagefeatureprint/revision

Swift. https:/developer.apple.com/swift/

FastAPL. https:/fastapi.tiangolo.com/

Keras Image Classification from Scratch.

https://keras.io/examples/vision/image_classification_from_scratch

A. Olsen et al., “DeepWeeds: A Multiclass Weed Species Image Dataset

for Deep Learning”. Scientific Reports 9:2058, February 2019

K Muhammad, S. Khan, J. Ser, V. Albuquerque, “Deep Learning for
Itigrade Brain Tumor Classi ion in Smart Healtt Systems: A

Prospective Survey”. IEEE Transactions on Neural Network and

Learning Systems, Vol. 32, No. 2. February 2021.

K. Iqtidar, A. Iqtidar, W. Ali, S. Aziz, M. Khan, “Image Pattern

Analysis towards Classification of Skin Cancer through Dermoscopic

Images™. 2020 First International Conference of Smart Systems and

Emerging Technologies (SMARTTECH). 2020

P. Rujakon, P. Takam, S. p P. Kt k K. Dull hai, T.

Chaiya. “Retail Management on Mobile Application using Product

Classification”. 19" ECTI-CON, 2020.

L. Liu, B. Zhou, Z. Zou, S. Yeh, L. Zheng, “A Smart Unstaffed Retail

Shop Based on Artificial Intelligence and IoT”. IEEE 23" International

Workshop on Computer Aided Modeling and Design of Communication

Links and Networks (CAMAD). 2018.

A. Savit, A. Damor. “Revolutionizing Retail Stores with Computer

Vision and Edge Al: A Novel Shelf Management System”. The 2"

International Conference on Applied Artificial Intelligence and

Computing (ICAAIC), 2023.

A. Ignatov, R. Timofte, A. Kulik, S. Yang, K. wang, F. Baum, M. Wu,

L. Xu, L. Gool, “Al Benchmark: All About Deep Learning on

Smartphones in 2019”. IEEE/CVF International Conference on

Computer Vision workshop (ICCVW), p.3617-3635, 2019.

G. Stalin, S. Anand, “Intelligent Smart Home Security System: A Deep

Learning Approach”. IEEE 10" Region 10 Humanitarian Technology

Conference (R10-HTC), 2022.

S. Khan, Y. Teng, J. Cui, “Pedestrian Traffic Lights Classification Using

Transfer Learning in Smart City Application”. 13" International

Conference on Communication Software and Networks. 2021.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen.

Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of

[39]

[40]

[41]
[42]
[43]

[44]

[45]
[46]
[47]

[48]

[49]

[50]

[51]

1 using very deep convolutional networks. In Proceedings
of the TEEE conference on computer vision and pattern recognition,
pages 1646-1654, 2016.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. Identity
mappings in deep residual networks. In European conference on
computer vision, pages 630-645. Springer, 2016.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image
super-resolution using deep convolutional networks. /EEE transactions
on pattern analysis and machine intelligence, 38(2):295-307, 2016.
Amazon EC2 P4 Instances. https://aws.amazon.com/ec2/instance-
types/p4/

Google Cloud GPU pricing. https:/cloud.google.com/compute/gpus-
pricing

Azure VM ND A100 v4-series. https://learn.microsoft.com/en-
us/azure/virtual hines/ndal 00-v4-series

Fielding, Roy Thomas. "Architectural Styles and the Design of
Network-based Software Architectures." Doctoral dissertation,
University of California, Irvine, 2000. [Online]. Available:
https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
TensorFlow Lite. https:/www.tensorflow.org/lite

NVIDIA Jetson. https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems/

Hathal Salamah A. Alwageed, “FOG Computing: The new Paradigm™.
Ci ions on Applied El (CAE), Vol.3,No. 5,
November 2015

M. lorga, L. Feldman, R. Barton, M. Martin, N. Goren, C. Mahmoudi,
“Fog Computing Conceptual Model”, NIST Special Publication 500-
325, March 2018. https://doi.org/10.6028/NIST.SP.500-325

A.V. Dastjerdi, H. Gupta, R.N. Calheiros, S.K. Ghosh, R. Buyya.
“Chapter 4 - Fog C ing: Principles, Archi es, and
Applications™. Internet of Things Principles and Paradigms, ISBN!
9780128053959, p. 61-75. 2016. https://doi.org/10.1016/B978-0-12-
805395-9.00004-6

R. Mahmud, R. Kotagiri, R. Buyya, “Fog Computing: A Taxonomy,
Survey and Future Directions”. Internet of Everything. Internet of
Things. Springer, Singapore, 2018. https://doi.org/10.1007/978-981-10-
5861-5 5

Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. IICV, 2015.

180

(& @ov)

(9% :Ql Joded)
Bunndwon pnojn pue abpg usamiaq uoleolisse| abew) Jo sisAjeuy aouewloyod

papua uonejuasald [elo Jay/siy 1o}

puejiey] ‘ABojouyos] jo anyisul IYDIN-1ey L
Jiseadyosoap yeseypenN

0} pejuasaid si 8)eolIued Siy |

uogodpp.av g fo a3vo1f1142)

¥202SAdod

aiodebuls | $20Z ‘zz-1¢Z Jequisidag
swajsAg painquysig pue Bupndwo) [9jjeied uo wnisodwAg jeuoijeusaju) 3saiy ay |

R/

mﬂmﬂ@@o o))

